
Journal of Ambient Intelligence and Smart Environments 0 (0) 1–0 1
IOS Press

A user behaviour-driven smart-home gateway
for energy management
Nikolaos Vastardis a,∗, Michael Kampouridis b and Kun Yang a

a University of Essex, School of Computer Science and Electronic Engineering, United Kingdom
E-mail: {nvasta,kunyang}@essex.ac.uk
b University of Kent, School of Computing, United Kingdom
E-mail: M.Kampouridis@kent.ac.uk

Abstract.
Current smart-home and automation systems have reduced generality and modularity, thus confining users in terms of func-

tionality. This paper proposes a novel system architecture and describes the implementation of a user-centric smart-home gate-
way that is able to support home-automation, energy usage management and reduction, as well as smart-grid operations. This
is enabled through a middleware service that exposes a control API, allowing the manipulation of the home network devices
and information, irrespectively of the involved technologies. Additionally, the system places the users as the prime owners of
their data, which in turn is expected to make them much more willing to install and cooperate with the system. The gateway
is supported by a centralised user-centric machine-learning component that is able to extract behavioural patterns of the users
and feed them back to the gateway. The results presented in this paper demonstrate the efficient operation of the gateway and
examine two well-know machine learning algorithms for identifying patterns in the user’s energy consumption behaviour. This
feature could be utilised to improve its performance and even identify energy saving opportunities.

Keywords: smart gateway, middleware, system architecture, machine-learning, energy management

1. Introduction

Smart home and automation technologies are be-
coming increasingly popular. This does not only con-
cern the technologically literate part of the population,
but also energy producers, grid operators and as well
as energy distributors. For example, the mass roll-out
of smart meters [14] is expected to transform the area
of residential energy consumption. This will also im-
pact the carbon emissions, especially in countries like
the UK. According to the Department of Energy and
Climate Change (DECC) statistics, 50% of UK car-
bon emissions are from buildings; of which, two-thirds
come from dwellings. In addition, the residential sec-
tor alone is responsible for the 37% of electricity end
use in the U.S. and 29% in the EU [24].

*Corresponding author. E-mail: nvasta@essex.ac.uk

Researchers and industrial players are looking for-
ward to new technologies that are able to moni-
tor and remotely control the energy consumption be-
haviour. There have been many new proposals for
Home and Building Energy Management Systems
(HEMSs/BEMSs). Prominent examples include the
Nest1 smart thermostat of Google and the OGEMA Al-
liance [28]. In most of these approaches however, the
final users are considered to be the last link of the en-
ergy and information chain. In practice, users are per-
ceived to be the just clients of a ready product with
specific requirements and capabilities. Their ability to
extend or alter the HEMS behaviour is quite limited.

The main motivation behind this work, is the be-
lief of the authors that future smart-home technolo-
gies should place the user in the heart of the system
architecture. Especially in residential energy manage-

1https://nest.com/

1876-1364/0-1900/$17.00 c© 0 – IOS Press and the authors. All rights reserved

2 Nikolaos Vastardis et al. / A user behaviour-driven smart-Home gateway for energy management

ment scenarios, its is not feasible to simply implement
energy conservation operations, disregarding the be-
haviour of the individuals involved and their comfort
levels. For the success of any such a system, the active
user engagement and personalized feedback, become
key issues. Additionally, the fact that all the user’s sen-
sitive information will be received and stored by an
alien entity, does not provide adequate motivation for
people to adopt smart-home technologies [3].

This paper presents the design and implementation
of a novel smart-home system that takes into account
the above points. This system is one of the core ele-
ments of the Digital Agent Networking for Customer
Energy Reduction (DANCER) project that aims to
achieve lasting behavioural changes, associated to the
energy reduction within the house, while retaining de-
sirable comfort levels. A preliminary version of this
work has already been published [23] describing the
high level architecture of the proposed system. The
current work looks in more detail the two vital com-
ponents of the DANCER system, the Home Gateway
(HG) and the Behavioural Pattern Extractor. These
two parts of the system allow the user to interact with
it, provide the home automation functionality and fi-
nally enable the system to learn and adapt to the user’s
behavioural patterns.

The contribution of this paper is threefold. First, the
general architecture of the system is briefly explained,
focusing on generality, modularity and the users’ be-
havioural patterns and comfort. Second, the software
design and implementation of the HG are analysed.
This includes the database structures, the software ser-
vices (e.g. Policy Engine) running and most impor-
tantly the developed middleware that exposes the Ap-
plication Programming Interface (API) of the HG. This
allows services to request context and actions from the
middleware, without any need to know the technol-
ogy specifications of the final endpoint. Consequently,
users can integrate devices of various technologies into
the home network as well as define personal actions
on them, customizing/extending the operation of the
smart-home. Finally, the machine learning mechanism
is presented. A specialized component (RECAP) is in
charge of collecting the data and uses well-known de-
terministic machine learning algorithms to extract be-
havioural patterns, which are later on fed back to the
HG. In contrast to other approaches that simply en-
force energy-saving actions, the employed methodol-
ogy is able to provide much more personalized and re-
fined feedback and management policies.

The structure of this paper is as follows. In Section
2 the most important literature on the area and existing
market solutions are reviewed. Section 3 presents the
general architecture of the DANCER system, while the
following Section 4 describes in more detail the indi-
vidual software components and service of the the HG.
These include the Policy Description Language (PDL)
that allows users to input their own automation prefer-
ences and the DANCER middleware and API that pro-
vide the feature of generality. Afterwards, in Section
5 the implementation of the machine learning compo-
nent is described, along with the feedback mechanism
to the HG. Section 6 and 7 present the current test-
bed implementation and a set of results that demon-
strate the feasibility and capabilities of the proposed
solution. Finally, Section 8 concludes this work.

2. Review of research area

The DANCER project is part of a larger effort in the
UK to transform the energy demand management and
introduce smart HEMSs/BEMSs. This has led to the
establishment of networks such as the EPSRC2 funded
TEDDINET3, currently comprised of DANCER and
21 more individual projects. The goal of TEDDINET
is to ensure a strong legacy of its outputs and find-
ings. Along with researchers however, the ICT sector
is proving to be increasingly active in the area with
many new products becoming available every year.

Most of the existing platforms focus on interop-
erability and middleware support for developing new
intelligent applications. The open-source OpenHAB4

project is a prime example of this category. Solutions
that originate from the industry sector such Google’s
Nest smart thermostat and Deutsche Telecom’s Qivi-
con5 are more limited in terms of interoperability. They
are supported however, by superior hardware and min-
imal compatibility issues in comparison to their com-
petitors. Ninja Blocks6 is another solution that lies
somewhere in between these two opposites. By releas-
ing most of the production code to the open-source
community, it provides a more extendible platform. All
of these system provide a certain level of home au-
tomation and most of them even allow the users to

2http://www.epsrc.ac.uk/Pages/default.aspx
3http://teddinet.org
4http://www.openhab.org
5https://www.qivicon.com
6https://ninjablocks.com

Nikolaos Vastardis et al. / A user behaviour-driven smart-Home gateway for energy management 3

Table 1
Review of existing HEMS Platforms.

Features OpenHAB Ninja Blocks Nest Qivicon
Open-Source Yes Yes No Yes
Automation Yes Yes No Yes
Extendibility High High Low Low

Programmability Yes Limited No Limited
Machine Learning No No Yes No

Data Stored Local Local Remote Remote

insert their operation preferences. However, machine
learning techniques have only been implemented on
the Nest, mainly due to hardware limitations in the
other platforms. The Nest on the other hand, depends
on an available Broadband connection and stores all
user information online. That could be a problem for a
smart energy management systems, since research in-
dicates that users expressed a mistrust in suppliers [3].
The discussed features are summarized in Table 1.

The availability and machine-to-machine (M2M)
communication capabilities of smart-home platforms,
enables researchers to examine ways of extending the
advanced metering infrastructure to a sub-residence
level [10]. One of the most prominent and practi-
cal proposals for bridging this gap between smart-
homes and the forthcoming smart-grids is the Ope-
nADR demand-response protocol [16], proposed to be
used complementary to the Smart Energy Profile.

Home Gateways (HGs) are a core component of
HEMS/BEMSs, and as such, they have drawn an ex-
tensive amount of interest. Standardization efforts such
as the Home Gateway Initiative (HGI)7 have already
yielded products available in the market. A home
network comprises of a wide variety of diverse de-
vices. This necessitates emergence of HGs that are
able to connect these devices together, enable trouble-
shooting and provide improved manageability [21]. It
is only natural that the latest research in the area fo-
cuses on interoperability and user interfacing. Bjel-
ica et al. [2] presented a 6LoWPAN enabled gateway
with UPnP support. The User Interface (UI) proposed
is a cloud-based application that communicates with
the HG via XML messages. The MPIGate by Crùz-
Sànchez et al. [8] on the other hand, entailed a lo-
cal multi-protocol HG for smart-home assisted appli-
cations. In a similar approach, Arnold et al. [1] pro-
posed an OSGi8 based HG supporting OpenADR. The

7http://www.homegatewayinitiative.org
8http://www.osgi.org/Main/HomePage

OSGi framework is frequently found in the literature
[11] and allows new services to be developed and de-
ployed on runtime. Furthermore, because of its support
of several interoperability standards like the MultiMe-
dia Home Platform (MHP), OpenCable, Jini and Uni-
versal Plug and Play (UPnP), it enables the extendibil-
ity of the home network with numerous of-the-shelve
products as well as novel multimedia services [27].

Their increasing processing capabilities are gradu-
ally enabling HGs to automatically predict user prefer-
ences through ambient intelligence and machine learn-
ing techniques. An excellent overview of the avail-
able on ambient intelligence technologies is provided
by Cook et al. [6]. Older techniques were usually fo-
cusing on a limited number of context variables for
the learning process [4,13]. In a different approach,
Hasan et al. [12] considered the problem of con-
flicts between multi-user preferences. The authors pro-
posed a combination Bayesian RN-Metanetwork (mul-
tilevel Bayesian network) and game theory to model
the users’ preferences and achieve conflict resolution.
Users however, had to evaluate the system recommen-
dations at every occurrence, in order to update it’s be-
haviour. Concerning the amount of information inte-
grated in the energy management systems, earlier pro-
posals provided only partial solutions, e.g. for home
thermal characterization [22] and air-conditioning [7].
Moreno et. al [18] suggested an OSGi-based system,
employing Big Data algorithms to manage and opti-
mize the energy consumption in buildings. Even this
more holistic approach though, investigates the issue
only on a per building/room basis. Principal Compo-
nent Analysis (PCA) is used to reduce the dimensional-
ity of the collected sensor data. This results in only tak-
ing into account the outdoor temperature, humidity and
pressure, when trying to predict energy consumption.
While the authors managed to accurately predict the
energy consumption, they do not consider the effect of
the aforementioned variables on the energy-related ac-
tions of the users. For residential scenarios, personal-

4 Nikolaos Vastardis et al. / A user behaviour-driven smart-Home gateway for energy management

ized energy management profiles requires a much finer
investigation and extended system capabilities.

In a nutshell, a new energy management architec-
ture is required, which not only provides the features
seen in Table 1, but is also capable of supporting mul-
tiple automation technologies and at the same time al-
lows personalized learning. Especially in residential
deployments, the one-size-fits-all principle cannot be
applied and a per-user/per-device consideration is nec-
essary. Finally, a simplified system that allows users to
easily extend its functionality, is the way to lead fu-
ture residential energy management beyond the limi-
tations of current approaches. Collaborative communi-
ties could emerge, making the power distribution grid
management a two way information stream. This work
attempts to realistically address the raised issues and
intends to consolidate the notion that users should be
placed at the centre of the system design.

3. System architecture

DANCER is a user-oriented sensor-based system
for monitoring and reducing energy consumption is
houses. Its efficiency and therefore its success, is cou-
pled with the comprehensiveness with which the user
can interact with it and its adaptivity in terms of differ-
ent deployment scenarios. Unlike most online-based
HEMSs, it is able to operate (although with limited
functionality) even when there is no Internet connec-
tivity in the premises it is located. This is a neces-
sity for a realistic deployment scenario, as some of
the locations might be completely disconnected. Con-
sequently the main functionality is located in a Home
Gateway (HG) device placed in the residence of each
user. The general outline of the system architecture of
DANCER is shown Figure 1.

The system architecture diagram demonstrates the
two core principles of the system design, modu-
larity and generality. Various components can be
added/removed, to alter the system’s operation or ex-
tend its capabilities. The home network for instance, as
shown in Figure 1, can comprise of a variety of diverse
devices. Smart and legacy appliances, sensor nodes,
UWB platforms, user interface and HVAC devices are
amongst some prime examples. The HG should have
the capabilities to connect to all of them, through wired
or wireless connections. The applications of the HG
however, cannot have a priori knowledge of the avail-
able network devices. Consequently, interoperability
is a key objective. In DANCER, a middleware layer

Fig. 1. High level architecture the DANCER system.

has been introduced in the HG to mask all implemen-
tation details from the services running on top. It al-
lows the manipulation of the local databases and con-
trol of the connected devices through a set of dynamic
action libraries. Through the provided API, the mid-
dleware exposes this generic pool of resources (con-
text and actions) on a number of application services
running on top and controls the authorization proce-
dure. More information on the developed middleware
is given in Section 4.2.

The HG is able to connect over the Internet to a
public UDP-based VPN. The VPN connection allows
access to a central storage component named Remote
Energy Consumption Amalgamation Point (RECAP).
This stores/aggregates each household’s energy con-
sumption information in a centralised, secure manner.
This enables automated behavioural pattern extraction
operations to take place, without wasting the limited
resources of the HG. The cumulative behavioural pat-
terns that derive from the collected data, can be then
used to produce energy saving strategies which in turn
can be fed back to HG. This whole operation can also
achieve improved global (rather than only local) en-
ergy utilization. The Behavioural Pattern Extractor ser-
vice of the RECAP, as seen in Figure 1, might be
ported to the HG as one more service, in cases where
no Internet connection is available. In both scenarios,
the output of the extractor is a set of rules matching
the behavioural patterns of the residents, which can
be taken into account while automating the energy-
related tasks. Consequently, when devising energy sav-

Nikolaos Vastardis et al. / A user behaviour-driven smart-Home gateway for energy management 5

ing policies, the comfort and habits of the users can be
taken into account, achieving a compromise between
consumption and savings as well as personalized feed-
back.

The VPN connection of the HG can be utilized for
an additionally purpose. It allows the user to connect to
the home network remotely, even if the home network
is protected by a firewall. This as seen in Figure 1, is
achieved through a public web-interface located in the
RECAP component.

4. The DANCER gateway

The HG software involves a number of services
running over the DANCER middleware. As depicted
in Figure 2, their operation is supported by three
database structures, while inter-process communica-
tion is achieved via a RabbitMQ server running in the
background. This is mainly utilized to allow client ser-
vices to send request messages to the middleware API
service, but can also be used to allow other compo-
nents to receive messages and act as servers. This com-
munication paradigm results in the local HG services,
being no different than the RECAP services described
previously. All local and remote daemons/applications
are able through the API to access the home network
devices and information stored in the databases. Con-
sequently the HG is able to operate as a stand-alone
device, as well as a distributed system, depending on
the requirements of the use case scenario. This feature
can prove to be quite valuable in terms of energy man-
agement. In a distributed system, various control ag-
gregation levels can be supported. For the remainder of
this document however, only two levels are considered
(HG and RECAP).

The core service component is the Local Energy
Saving Decision Making Agent (LESDMA). It receives
data from the end-users energy usage preferences,
the derived users’ behaviour patterns and the home
network sensors, including activity-monitoring UWB
modules. Afterwards decisions are made to adjust en-
ergy consumption in areas not being used through-
out the dwelling. Apart from the decision making
mechanism, other important daemon services running
on the gateway include the Sensor Manager and the
sensor/actuator controlling services. The former is in
charge of polling all the home network devices to
discover their status and acquire the information re-
quired for the efficient operation of the LESDMA.
The latter ones (e.g. Serial Manager) are used to fa-

Fig. 2. The software architecture of the DANCER Home Gateway.

cilitate the communication with the devices present in
the home network, supporting the technology indepen-
dence feature. All the mentioned services along with
the DANCER middleware and the databases involved
are more extensively presented in the following sub-
sections.

The software architecture follows a service-centric
approach similar to OSGi. However it was deemed
appropriate to avoid using the framework in order to
optimize the gateway’s performance. Instead the ser-
vices are controlled using Linux service manipulation
tools. The deployed architecture though, could easily
be ported on OSGi, in cases where a more powerful
platform would be available.

4.1. Databases

There are three local discrete databases, an SQL, an
RRD and a Policy Database. Each of them performs
a specific operation and does not necessarily relate to
the other two. They are all designed however, to store
all necessary information locally and to facilitate the
maximum programmability of the HG. It is noted that
apart from the SQL database, the remaining two are
file-based.

6 Nikolaos Vastardis et al. / A user behaviour-driven smart-Home gateway for energy management

4.1.1. SQL database
It contains the contemporary information on the

home network devices, the context data they produce
and the identifiers of the actions that can be applied
upon them. Consequently, there are six main tables in
the resulting schema.

The first table, contains all the context data required
for the HG operation. Each entry has a name, a value
and a unit (e.g. none, Fahrenheit, Celsius, Watts, etc.).
Additional fields include the function, the type, when
it was last updated and two factors, the periodicity and
the scaling one. The function and type fields can be
used in combination, to acquired updates for this con-
text from the home network (or any other location).
The type column values are limited to the following
options.

– User: For context that is set by the user.
– Data: For context that is set by the system.
– Function: For context that is acquired through ac-

cessing the home network.
– Network: For context that is sent automatically

from the home network.

The components table contains all the necessary in-
formation for the devices present in the home network.
These include the device ID, the MAC address of the
device (if applicable), the endpoint, general informa-
tion on it, its type, the current operational mode, its in-
terface and the level it is has been current set to. The in-
terface more specifically references the currently sup-
ported technologies in the interfaces table. In terms of
drivers, up to this point the HG can support X10, Zig-
bee and Xbee devices. The component type is a more
abstract concept and can take as values the three fol-
lowing options.

– on-off: For components that only turn on and off.
– level: For components that take a value as a pa-

rameter.
– sensor: For components that only report context

information.

The actions table entries describe the operations
that are currently supported to be performed on the
home network devices. Each action has a specific type,
which corresponds to one of the currently supported
interfaces, contained again in the interfaces table. The
most important aspect of the actions entries is their
combination with the conflicts table. This consists of
only two fields that contain as values the IDs of exist-
ing actions. Each entry represents a conflict between
these two actions and therefore, whenever one of them

is performed on a device, the second one is considered
to have a negating effect (also see Section 4.1.3). This
is quite useful in scenarios where automated actions
should be performed. Finally, the last table contains
messages towards the user, generated either by the
DANCER system itself, or its administrators. This al-
low personalized feedback to be provided to the users,
as well as user-supervised updating operations for the
energy management policies.

4.1.2. RRD database
The RRD database constitutes of multiple RRDtool9

files. RRDtool handles time-series data using a circu-
lar buffer. The format in which these data are stored
follows a timestamp-value(s) pattern, though the actual
RRDtool file is in binary format. In DANCER, inputs
from each sensor are saved in a separate file, with a
maximum resolution of 30 seconds. Additionally, The
data are averaged weekly, monthly and yearly. This
simplifies the access/storing operations and enables a
much faster retrieval and visual representation of the
available information.

4.1.3. Policy database
The policy database contains the rules that enable

the automation and machine learning operations of the
HG to take place. They are written in clear text for-
mat, while the language format in which these policy
rules are formulated is an extension of the approach
suggested by the PANDA framework [26]. The fact
that these rules are defined in a simple intuitive clear
text language, greatly simplifies the system configu-
ration. Policies can be updated or even exchanged by
users, encouraging the creation of energy-aware col-
laborative user communities. In the future, this could
be extended even more with the introduction of a Vi-
sual Programming Language (VPL) policy editor tool.

The PANDA policy rules can be explicitly defined
by the user or generated by the classification algo-
rithms running on the data collected from the home
network devices. An example is presented in Table 2.
The employed format will be referred to from now on
as the Policy Definition Language (PDL). As shown in
the table, the first line of each policy script defines it
name. Notice that this could differ from the actual file
name. The second line can contain a string that carries
the description of the policy file.

The remainder of the policy script is split into
groups of rules (policies). Each group is defined by its

9http://oss.oetiker.ch/rrdtool/

Nikolaos Vastardis et al. / A user behaviour-driven smart-Home gateway for energy management 7

Table 2
An example of the format of the ’.PSD’ policy scripts.

PS MyEnergy
Policy Script

MyEnergy_Control_Info
Policy Script Info

GROUP Heating 1
Group Priority

BEGIN_G
PID0001

ID
, IF temperature < 18

Condition
AND Device1On == true THEN Actuator1.TurnOn()

Action
1

Policy Priority
;

PID0003, IF Device1On == true OR Device2On == true THEN Actuator2.TurnOff() 3;
PID0004, IF temperature > 24 THEN Actuator1.TurnOff() 4;
PID0005, IF time > 22:00 AND { day == Sat OR day == Sun }

Condition Group
THEN Actuator3.Dim(60

Parameter
) 6;

END_G

GROUP Lights 2
BEGIN_G

PID0002, IF Device1On
Context Variable

== true OR Device2On == true THEN Actuator2
Component

. TurnOff()
Function

2;
END_G

ENDPS

name and priority value. The priority values are con-
sidered in an ascending order, meaning that rules of
groups with higher priority values will be considered
first. Each rule however, has its own priority value as
well, for a more refined prioritization. It has to be made
clear at this point that priority is always calculated in
conflicting policies, not groups. As mentioned in Sec-
tion 4.1, each available action in the HG SQL database
might conflict with one or more other actions. When
multiple policy rules are about to be executed at the
same point in time, if they are conflicting only the one
with the highest priority will be called. For instance, if
a device is about to be both turned off and on, with the
former one having a higher priority, then this device
will just be turned off.

As seen in Table 2, each group can contain multiple
policies. Each policy is describe by a unique identifier,
which follows the format “PIDXXXX” (X represents
a decimal number). This identifier is unique along the
whole policy script, not just the group. Afterwards, the
conditions and action operation are stated, following
a rule-based format IF {condition(s)}, THEN
{action}. The conditions can be simple or complex.
Simple conditions comprise of a single mathematical
relationship between a context variable (whose value
can be acquired from the SQL database) and a static
value. This relationship can be either true or false. In
more complex conditions, multiple relationships can

be constructed and combined using either the AND or
the OR operators.

4.2. DANCER API server

Running over the RabbitMQ messaging service, the
DANCER middleware hides all the lower implemen-
tation details from the operating services (Serial Man-
ager, Sensor Manager, LESDMA, etc.). This includes
the SQL database updates, the communication with the
home network devices, the RRD operations and the
LESDMA policy script manipulations. Hence, any of
these implementation specific aspects, can be altered
independently of the operating applications. This im-
proves greatly the modularity of the whole system and
enables remote energy management.

Due to the highly portability of the RabbitMQ ser-
vice, multiple API clients can be supported. For in-
stance, a PHP-based web interface can be running
on top of the API as a service, in parallel to an-
other Android-based client application. This mecha-
nism also greatly simplifies the implementation of fu-
ture client extensions, as these are all just services, ag-
nostic of the lower specifications of the system. In ad-
dition it removes any constraints imposed by imple-
mentation platforms such as OSGi. A dedicated Rab-
bitMQ queue has been assigned to the API Server.
All API messages sent to it should abide to a specific
JSON format to be normally processed, otherwise they

8 Nikolaos Vastardis et al. / A user behaviour-driven smart-Home gateway for energy management

are dumped. In general there are four types of mes-
sages in the DANCER API.

1. REQST Message
2. REPLY Message
3. ERR Message
4. ACK Messages

Every incoming REQST message is handled and a
REPLY message is send back to the connecting client
if a reply queue has been registered. In cases where
there was a problem with receiving the request or its
execution was not successful, an ERR message is sent
instead. ERR messages contain an error code describ-
ing what exactly went wrong.

4.2.1. The action interface
A set of dynamic libraries, accessible from the mid-

dleware, allow it to control various aspects of the net-
work and its local system. This capability, along with
the dynamic libraries themselves are depicted in Fig-
ure 2 as the “Action Interface” component. The Ac-
tion Interface, borrowing the terminology of object-
oriented programming, is a generic descriptor defining
the method in which all actions towards home network
devices or the HG should be presented. Each new li-
brary is obliged to support the following programming
functions, which are called serially, whenever an ac-
tion is to be performed.

1. passParams(): This function passes all the re-
quired parameters to the action.

2. trigger(): After the action has been initialized, it
is finally performed.

The current implementation follows a methodology
in which is individual action is specified in its own dy-
namic library file. However, since any number of pa-
rameters can be provided in each action, more com-
plicated libraries can be constructed. The Action Inter-
face libraries can be installed, upgraded and deleted on
run-time, thus allowing the modular system’s capabili-
ties to be extended, without changing its core function-
ality and installed services. Actions for devices that
were not previously supported can be downloaded on-
demand to the HG, provided at least that the system
core drivers are in place. On top of that, the fact that
the DANCER middleware is in charge of performing
all actions in such a generic way, enables the system
to monitor the performed energy related operations as
well as the requesting components (e.g. Mobile Ap-
plication, System Service). This allows a much more
detailed views of who and why chooses to perform a
certain action.

4.3. Serial manager

As seen in Figure 2, below the Action Interface
several technology-dependent system components are
present. They are mainly used to control and communi-
cate with the various home-automation equipment in-
stalled in each residence. In energy management sys-
tems, apart from sensor modules, actuator devices are
also required. This extends the systems capabilities
from only providing feedback to the user, to actually
take initiatives, preventing any energy wasting. Ac-
tuators based on technologies such as Bluetooth and
NFC can be employed to achieve the necessary func-
tionality. However, for the current system implemen-
tation, the Zigbee technology was selected, because of
its extremely long battery life and easy deployment
(especially taking into account that the system is to
be deployed/tested in multiple residential locations).
More specifically, the Zigbee devices operate under the
Home-Automation profile, as defined by the Zigbee
Alliance10 and the Zigbee Cluster Library (ZCL). Ac-
cording to the IEEE 802.14.5 standard, they are sub-
jected to the control of the coordinator module, in-
stalled in the HG. To communicate with this module,
the HG serial interface is used. The Serial Manager
service binds to that interface and is able to send or
receive data to/from the Zigbee network.

Communication between the Serial Manager and
the other software components takes place through
the RabbitMQ server, following the publish-subscribe
paradigm [15]. This is accomplished using the ex-
change points of RabbitMQ. The Serial Manager is
listening to a specific exchange for all messages that
has the appropriate tag (e.g. ’SerialMngr’). It is also
able to publish in this exchange point, specific outputs
from the Serial Interface, so that services that are in-
terested in this kind of information, can subscribe to
it. The incoming requests from other software com-
ponents contain the Zigbee command that should be
send down the serial interface of the HG. Currently
the coordinator module used supports an AT command
set to control the Zigbee network. The replies gener-
ated by the Zigbee network are returned via the serial
interface and the Serial Manager sends them back to
the corresponding client, via unicast. The RabbitMQ
messages follow a JSON format, similar to the one
of the DANCER middleware. The generic formats of
the input (Request) and output (Reply) messages are

10http://www.zigbee.org/

Nikolaos Vastardis et al. / A user behaviour-driven smart-Home gateway for energy management 9

shown in Table 3. This mechanism not only improves
scalability, but also enables message prioritization to
take place. Incoming requests are processed according
to a RabbitMQ-defined routing label to a set of prior-
ity queues. In the current implementation three prior-
ity queues have been taken into account, although it is
flexible enough to support any number.

The Serial Manager can be considered as a dummy
process with no knowledge of what commands are is-
sued and what replies are gathered. It is only able to
match the information received through the serial in-
terface, to the expected replies of the proceed mes-
sages. For the AT command-set used, this is achieved
through the use of regular expressions. In the request
message structure seen in Table 3, they are stored in
the ’response_regex’ field.

4.4. Sensor manager

The Sensor Manager is another daemon service run-
ning on the HG. Its main contribution lies on updating
the SQL and RRD databases with (1) the home net-
work actuators’ status and (2) with the current context
information. In terms of energy management, the first
operation defines the energy saving capabilities of the
system. If for example, a device is already off, then
further energy savings from it cannot be achieved. The
second operation on the other hand, provides informa-
tion required for the operation of the LESDMA pol-
icy engine service and the machine learning procedure
of the RECAP. All energy/environmental data obtained
from the deployed sensors are considered here.

The first Sensor Manager operation is achieved by
periodically polling all non-sensor components de-
fined in the corresponding SQL databased table. What
is required of the Sensor Manager, is to check all con-
text entries and identify the ones that it should update
with the appropriate information from the home net-
work devices. As mentioned in Section 4.1, the con-
text table entries contain the ’type’ field. In order for
the service to chose the entries that should be updated,
the ones whose ’type’ is set to ’Function’ are selected.
For each of them, the function database column is
then used to request the appropriate action from the
DANCER middleware.

The second operation of the Sensor Manager how-
ever requires a bit more careful investigation. To pro-
vide a more comprehensive description, Figure 3 is
shown, noting the procedural steps for the case of an
Xbee sensor. Some of the sensor devices (components)
present the home network, do not have the capabil-

Fig. 3. Demonstration of the procedure for saving reported data via
the Sensor Manager.

ity to respond to requests and just report the sensed
values back to the gateway. This operational method,
depicted in step 1 of the figure, is very common in
Xbee wireless modules, which may coexist with other
more advanced Zigbee devices. The Serial Manager,
as mentioned briefly in the previous subsection, is able
in step 2 to receive the data coming from the HG se-
rial interface, and to publish them in step 3 to a central
RabbitMQ exchange point. For the AT command-set
used by the coordinator module firmware, these data
are serial inputs identified by the prefixes “RX” and
“REPORTATTR”, depending on whether they were
generated by Xbee or Zigbee modules respectively.
The Sensor Manager, in step 4 of Figure 3, subscribes
to the publishing exchange point and processes each
input when it is received. To find out which context ta-
ble entry should be updated with the new data, again
the ’type’ field is utilized. The entries acquired in step
5 of the figure, whose ’type’ value is set to ’Network’
are selected and reviewed. If the incoming data have
originated from a correct source with the appropri-
ate parameters (once again specified in the ’function’
field), then the new value for the entry is sent to the API
server in step 6, and it is updated in the SQL database
in the step 7. Notice that more than one entries can be
updated via a single input. This is desirable since some
data inputs may contain more that one useful pieces
of information. Additionally, pre-processing of the in-
coming data can take place by calling actions, once
again utilizing the DANCER middleware API.

Apart from updating the existing fields in the con-
text database, the Sensor Manager is also able to record

10 Nikolaos Vastardis et al. / A user behaviour-driven smart-Home gateway for energy management

Table 3
The JSON format of the Serial Manager RabbitMQ Messages

Request Message Reply Message

{
msgID: The message ID
msgtype: “request”
replyQueue: The name of the client’s queue
command: The Zigbee command
response_regex: Used to match replies
wait: The waiting period to gather replies

}

{
msgID: The message ID
msgtype: “reply”
requestID: The corresponding request
response: Serial interface output

}

these changes in the corresponding RRD files. For this
operation to be successful, the Sensor Manager should
also have the ability of creating new RRD database
files. For instance if a new context variable is defined
and a corresponding RRD series file is not present, the
service should initialize one named after the context
entry, and start saving the sensor data received.

4.5. LESDMA

For an energy management system to make deci-
sion on when to intervene, an intelligent component
is required to work alongside the monitoring opera-
tions. In DANCER this operation is performed by the
Local Energy Saving Decision Making Agent (LES-
DMA) service. It runs as a daemon and loads a single
policy script database file, as defined in Section 4.1.3.
The operation of LESDMA implements the automa-
tion part of DANCER, rather than directly reducing
energy consumption. It is the policy script that defines
whether the selected rules will conserve or not energy.
This is exactly what make personalized behavioural
pattern detection so important. In cases where energy
saving policies are implemented, the comfort levels of
the user are directly related to the degree the system
tries not to disrupt the user’s everyday habits.

During its operation, the daemon checks the SQL
database periodically (approximately every three sec-
onds, although this value is configurable) and reads the
newly updated context variables. Whenever the value
of a variable is updated, the policies that are affected
by it are reviewed. In simple words this means that
policies that include the changed context variable in
their conditions are checked whether they are currently
true or false. All the policies which are true for the cur-
rent context are set to be executed. Execution of a pol-
icy is nothing more that requesting from the middle-
ware to run the function which is specified in the rule,
but only for the appropriate device.

This is exactly the point where prioritization takes
place. If multiple conflicting actions are true at the
same time, only the highest priority one is activated.
Conflicts are specified in the “conflicts” table (in terms
of the SQL schema) of the database, which is also read
periodically along with the “context” table. It has to
be stressed that conflicts only apply to actions on the
same device. Conflicting actions on different devices
will still be executed. The algorithm of this operation
is presented in more detail in the pseudo-code of Al-
gorithm 1.

In the pseudo-code two procedures are visible, the
ContextChangeEventDrivenPolicyReasoning and the
ExecuteAffectedPolicies. The former one is called pe-
riodically to just receive the set of policies P , affected
from a certain context change. If any, it then calls
for their execution through the latter. Its operation is
mainly related to accessing the SQL database, there-
fore it is not explained in any more detail. It is also
reading the conflicts table, denoted as C in Algorithm
1. It has to be noted that each individual policy p of
P , is also a complex structure with conditions and ac-
tions, where each action targets a specific home net-
work device ID.

The ExecuteAffectedPolicies procedure has three
distinguishable parts, placed in three serially exe-
cutable for loops. The first one only allows the execu-
tion of policies which are true for the current context.
The second one performs the prioritization. If there are
conflicting policies, whose group or individual priori-
ties are higher that the priority p being checked, then
p will be excluded from the execution step. Finally,
the last for loop executes the remaining true, non-
conflicting policies. Notice however the E set. This a
global variable used to indicate the actions that have
previously been executed, so that they won’t get called
again and again. If an affected policy is not true, then
it’s action is removed from the set if it was contained.

Nikolaos Vastardis et al. / A user behaviour-driven smart-Home gateway for energy management 11

Algorithm 1 Pseudo-code of the decision making operation of LESDMA
1: E ← ∅
2:
3: procedure CONTEXTCHANGEEVENTDRIVENPOLICYREASONING()
4: P ← getAffectedPolicies()
5: C ← getConflicts()
6: if P 6= ∅ then
7: ExecuteAffectedPolicies(P,C)
8: end if
9: end procedure

10:
11: procedure EXECUTEAFFECTEDPOLICIES(P,C)
12: for all p ∈ P do
13: if p = false then
14: P ← P ∩ p
15: else
16: E ← E ∩ p.action
17: end if
18: end for
19: for all p ∈ P do
20: for all cp ∈ (C(p) ∩ P) do
21: if p.action.device = cp.action.device then
22: if (PrG(cp) ≥ PrG(p)) OR

(PrG(cp) = PrG(p) AND PrP (cp) ≥ PrP (p)) then
23: P ← P ∩ p
24: end if
25: end if
26: end for
27: end for
28: for all p ∈ P do
29: if p.action 6∈ E then
30: APIServer.execute(p.action)
31: E ← E ∪ p.action
32: end if
33: end for
34: end procedure

On the contrary, if the affected policy is true and is ac-
tually executed, then it’s action is added in E. It has to
be made clear here that each action belongs to a spe-
cific policy, therefore even if two policies contain the
same action call on the same home network device, the
LESDMA service will still consider these to be differ-
ent actions, as far as E is concerned.

5. Behavioural pattern extractor

It has already been established that learning is a very
important aspect of DANCER. The goal here is to al-
low the system to learn and predict the behavioural pat-
terns of the user, from the historic data that are avail-
able. These include the action requests generated by

the user, as well as the collected sensor data from the
various devices installed in each household. The above
constitutes what is known as a classification problem.

In a classification problem, the aim is to create
a model that places objects into pre-defined cate-
gories/classes. The model is able to determine the cat-
egory of an object by analysing patterns (attribute-
values) between objects of that category. Therefore,
the goal is to find the best model that represents the
predictive relationships in the data. In the consid-
ered scenario, the classes and attributes could vary
per device. For example, for the TV device the pre-
defined classes could be TurnOn(), TurnOff()
and DoNothing(). In addition, an attribute could
be any potentially monitored variable within the res-
idence, such as occupancy, day, time, humidity and

12 Nikolaos Vastardis et al. / A user behaviour-driven smart-Home gateway for energy management

temperature, depending on the capability of the res-
idential deployment scenario. Models can combine
multiple attributes, which are considered simultane-
ously.

Classification algorithms can be divided into two
distinctive categories, according to the model rep-
resentation they produce: ‘black-box’ models, and
‘white-box’ models. The former models are more dif-
ficult to be interpreted; some examples of such models
are the ones produced from support vector machines
and artificial neural networks [17]. On the other hand,
‘white-box’ models are easily interpretable. An exam-
ple of this category is the decision tree models. Due to
their advantage of interpretability, they can be used to
understand how the predictions are made by the model.
This leads to a greater degree of trust in the mod-
els produced, which is crucial in various domains—
e.g., medical, home-automation and financial domains,
where the predictions usually need to be validated by
doctors/experts.

There are many algorithms that can be used for clas-
sification purposes. For the purposes of this paper, two
of the most popular classification algorithms will be
used, namely C4.5 [20] and RIPPER [5]. These al-
gorithms have previously been implemented in Weka
(Waikato Environment for Knowledge Analysis) [25],
which is a popular suite of machine learning [17] soft-
ware written in Java, developed at the University of
Waikato, New Zealand.

It should be mentioned that Weka has numerous
other algorithms that could be tested with our system.
However, this was beyond the scope of our research
agenda. At the moment, only the two popular classi-
fication algorithms mentioned previously are used. In
addition, as mentioned in Section 3, the entire sys-
tem design focuses on generality and modularity. This
translates to the idea of equivalent components be-
ing used interchangeably. Therefore, any other learn-
ing mechanism library or software component can be
employed, as long as the end-product of this operation
can be transmitted via the middleware API.

In the following sections (Sections 5.1 and 5.2),the
two algorithms used in our work (C4.5 and RIPPER)
will be presented in more detail. Finally, in Section 5.3
the learning mechanism process is presented.

5.1. C4.5 (J48)

J48 is Weka’s implementation [25] of the well-
known C4.5 algorithm [20]. The C4.5 algorithm, prob-
ably the most known decision tree induction algorithm,

Day

TV.DoNothing()
(100.0/0.0)

>
6

Time

TV.DoNothing()
(4.0/0.0)

<
11

: 3
1

TV.TurnOn()
(12.0/1.0)

>=
11 : 31

<=
6

Fig. 4. Sample decision tree generated by the C4.5 algorithm.

employs an entropy-based criterion in order to select
the best attribute to create a node. In essence, the en-
tropy measures the (im)purity of a collection of exam-
ples relative to their values of the class attribute, where
higher entropy values correspond to more uniformly
distributed examples, while lower entropy values cor-
respond to more homogeneous examples (more exam-
ples associated with the same class value). Hence, at
each iteration of the top-down procedure, C4.5’s selec-
tion criterion favours attributes that minimise the en-
tropy of the generated subsets—i.e., the subsets cre-
ated according to the examples’ value of the selected
attribute. C4.5 has been successfully applied to a wide
range of classification problems and it is usually used
on evaluative comparisons of new classification algo-
rithms.

An example of a decision tree produced by C4.5 is
presented in Figure 4. It can be observed that the rule
first checks if the Day of the week is greater than 6 or
less than or equal to 6. Given that the first day of the
week in our implementation is Sunday (Day 1), Day 6
is Friday. Thus, if the day of the Week is Saturday, then
the rule says that no action should be taken regarding
the TV device (TV.DoNothing()). If, on the other
hand, the day of the week is Sunday - Friday, then an
additional check regarding the time is made. If the time
is earlier than 11:31am, then the action is again to do
nothing. On the other hand, if the time of the day is
11:31am or any time after that, then the decision tree
suggests turning on the TV (TV.TurnOn()). Effec-
tively, the knowledge acquired from this tree is that the
residents in the given house watch TV every day of the
week, with the exception of Saturday, from 11:31am
onwards.

An additional information provided here is the cor-
rectness of the rules. This information is given inside
the parentheses below each one of the leaf nodes. The
first number is the total number of instances reaching
the respective leaf. The second number is the num-
ber of those instances that are misclassified. Thus, the
first rule suggests that the leaf TV.DoNothing()

Nikolaos Vastardis et al. / A user behaviour-driven smart-Home gateway for energy management 13

was reached 100 times, from which none was misclas-
sified (i.e., all of them were correctly classified, thus
100% accuracy). The second rule suggests that the leaf
TV.DoNothing() was reached 12 times, and none
of them was misclassified. Lastly, the third rule in-
forms us that the leaf TV.TurnOn() was reached 4
times, and only 1 of them was misclassified. More in-
formation about the accuracy of the rules of C4.5 and
RIPPER will be given in the discussion of the experi-
mental results in Section 7.

5.2. RIPPER (JRip)

JRip is Weka’s implementation [25] of the RIPPER
algorithm [5]. RIPPER sequentially creates a set of
rules that is subject to a global post-processing step
by implementing a rule induction procedure with a re-
duced error pruning strategy [20]. It starts by designat-
ing a fraction of the training examples as the pruning
set, which is used to remove terms from rules in or-
der to create simpler and more accurate rules. Then,
the procedure to create a set of rules can be divided
into two steps. In the first step, rules are individually
created using a reduced error pruning strategy cover-
ing all training examples (excluding the training exam-
ples comprising the pruning set). In the second step,
a global post-processing step adjusts or replaces rules
guided by a performance measure of the modified set
of rules achieved in the pruning set. The performance
measure takes into account both accuracy and simplic-
ity (size of the rules) of the set of rules.

An example of the final set of rules created by RIP-
PER is presented in Figure 5. It can be observed that
the algorithm has created a set of three rules in this sce-
nario. These three rules represent the same rules that
were described in Figure 4 for C4.5. The misclassified
cases are again presented inside the parentheses at the
end of each rule.

5.3. Learning Mechanism Process

The learning process begins by forming the classi-
fication problem. To do so, the attributes that are used
to predict the classes of the system need to be defined.
Unlike previous approaches, where partial solutions or
only a subset of the information collected is used (e.g.
[22,7,18]), in our framework, the attributes are the all
sensor and polling data collected by the Sensor Man-
ager of each HG, along with their respective times-
tamps. This is due to residential energy management
scenarios considered. The detection of personalized

behavioural patterns does not allow for generic conces-
sions on what drives an individual to perform energy-
related actions/activities. The attributes are combined
to predict the classes; namely the actions that can be
performed by the user at any given time. As mentioned
in Section 4.2.1, these action records are logged in run-
time by the middleware, taking into account their avail-
ability on the gateway.

Figure 6 presents the steps of the learning mecha-
nism process. The first step is to query the attributes
data. The resolution of this information can take pretty
much any value but in the considered scenario has been
set to 30 seconds. However, the actions of the user are
recorded by the DANCER middleware in an individ-
ual log file, at the point in time in which they took
place. The first step of the pre-processing operation is
in charge of merging these two data sources into a sin-
gle table. Given a start and stop time of a query, each
time-stamp set contains the sensor and polling data.
The time-stamp values of the actions however, most
probably will differ. Therefore they have to be corre-
lated with the data at the time they were performed.
Interpolation could be used in this case, but since the
data resolution is quite small, the sensor data values
from the exactly previous time-stamp are used to fill
the missing values.

From this point on, that data for each the monitored
devices is processed individually. Intuitively however,
it is expected that the use of each of these appliances
will only be involved in a handful of energy-related op-
erations per day e.g., turning on/off the TV, changing
the thermostat temperature, turning on/off the lights.
Consequently, the number of behavioural rules ex-
tracted is by definition small. In addition, important
information can be gathered for the state of the en-
vironment when there is no action in the house, and
also what was the current state that led to an action.
For this reason, it was deemed necessary to also take
into account the states of the environment when noth-
ing is happening; this is represented as another action,
identified as DoNothing(). If no user action has
taken place, then the class of the system is recorded as
DoNothing().

Next, in Step 3 the learning algorithm (either C4.5 or
RIPPER) runs per device. Each algorithm then returns
rules in the form of a decision tree (C4.5) or as a set of
rules (RIPPER). Since the algorithm is run per device,
the obtained rules are also per device (Step 4). In the
following step (Step 5), these rules are post-processed.
This post-processing operation involves three steps.
Initially, the rules generated, whether they are in the

14 Nikolaos Vastardis et al. / A user behaviour-driven smart-Home gateway for energy management

(Day > 6) => Action=TV.DoNothing() (100.0/0.0)

(Day <= 6) and (Time < 11:31) => Action=TV.DoNothing() (12.0/0.0)

(Day <= 6) and (Time >= 11:31) => Action=TV.TurnOn() (4.0/1.0)

Fig. 5. Sample of a set of classification rules derived from the RIPPER algorithm.

form of a tree of a set, are translated into the PDL for-
mat described in 4.1.3. Following that, the rules that
involve a DoNothing() action are pruned/removed.
This is necessary, as the user is only interested in
rules that suggest taking a certain action. To complete
the post-precessing, only the rules that have a classi-
fication performance above a pre-specified threshold
r% are selected. This is because only well-performing
rules are of interest, as this increases their possibility
of being selected by the user. It should be mentioned
that different metrics can be applied to judge the pre-
dictive performance of the rules. For the purposes of
our framework, the accuracy and the F-measure (also
known as F1 score) were chosen.

The accuracy presents the correctness of each rule,
while the F-measure is the weighted average of two
other well-known metrics, namely precision and recall.
Precision presents the fraction of retrieved instances
that are relevant, and recall presents the fraction of rel-
evant instances that are retrieved. The formulas for all
these metrics are presented in Equations 1 - 4, where
TP stands for True Positive, TN for True Negative, FP
for False Positive, and FN for False Negative.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 = 2× Precision×Recall

Precision+Recall
(4)

For the purposes of our experiments, it was decided
to choose only rules of high accuracy and F1 score,
thus the threshold r was set to 50% for both of these

Learning Mechanism Process

1. Query data
2. Pre-process raw data

(a) Integrate the action occurrences into the raw data
(b) Fill in the missing DoNothing() actions.

3. Run algorithm
4. Obtain rules per device
5. Post-process the rules

(a) Translate the obtained rules into PDL format
(b) Pruning: remove the DoNothing() rules
(c) Accept rules over the r% threshold

6. Collect all rules from all devices
7. Return rules to user via DANCER API

Fig. 6. Learning Mechanism Process

metrics. Of course, this can be dynamically adjusted
according to each deployment scenario. In cases where
the users seem to accept most of the detected rules it
can be lowered, while it can be increased when users
only seem to consider a small subset of the provided
feedback. Thus, the number of “useful” rules provided
can be adjusted to the preferences of the user.

Finally, in Step 6, the remaining rules from all de-
vices are gathered and in step 7, the DANCER middle-
ware API is used to temporarily store the newly dis-
covered rules in the SQL database of the correspond-
ing HG (whose gathered sensor data and actions gener-
ated them in the first place). Once the user connects to
the user-interface platform, (s)he is informed that new
rules can be applied on the policy engine. Afterwards
the opportunity is given to the user to review the new
rules, so that these can be integrated in the currently
deployed policy script.

6. Prototype & test-bed

Currently the prototype of the DANCER system is
comprised of an enterprise level cloud platform con-
nected to the public Internet, Raspberry Pi type B Sin-

Nikolaos Vastardis et al. / A user behaviour-driven smart-Home gateway for energy management 15

gle Board Computer (SBC) acting as the HG, and a
variety of compatible sensors/actuator modules. The
selected SBC features a 700 MHz ARM processor,
512MB of RAM and an 8 GB SD-card storage and is
running the Rasbian Linux distribution operating sys-
tem. Most DANCER services have been implemented
using the Java SDK with 1.7 compliance level. Remote
and local UI services were built over the Apache 2.2
web server with PHP 5.4 and for the Android platform
using the appropriate SDK and libraries. Although
the software architecture follows a service-centric ap-
proach similar to OSGi, it was deemed appropriate to
avoid using the framework in order to optimize the
gateway’s performance. Instead the services are con-
trolled using Linux service manipulation tools. In ad-
dition, all the software components were ported onto
Debian11 packages that can be installed via a private
repository located alongside the RECAP server.

The GPIO pin serial interface of the Raspberry Pi is
used to connect to the Zigbee coordinator module. The
ETRX357 Telegesis chip is employed to be the coor-
dinator, running the Zigbee Home Automation (HA)
profile firmware CICIE R300 BETA. It has the capa-
bility to communicate not only with Zigbee Alliance
certified modules, but also with Digi Xbee Pro12 mod-
ules, if these have been properly configured.

The HG is able to support peripheral sen-
sors/actuators of various communication technologies.
Apart from its embedded Ethernet port, it is also
equipped with an Asus WL-330N3G 3G router/access
point and a C11 X10 Computer Interface Serial inter-
face. Consequently, it has the ability to communicate
with IPv4/IPv6 enables devices, X10 PLC modules as
well as Zibgee wireless sensors/actuators.

The prototype implementation has already been de-
ployed on a single bedroom flat in Colchester, UK.
As shown in Figure 7, the utilized/controlled de-
vices installed around the house premises, include a
UWB TimeDomain’s13 PulsON P410 transceiver and
two Broadspec antennas, various Xbee-enabled sen-
sors that monitor the room temperatures and the heat-
ing system activity. The Zigbee HA profile devices in-
stalled comprise of 2 HA Profile 4Noks14 Plug mod-
ules, a Computime15 CTW218 Smart Energy Thermo-

11https://www.debian.org/
12http://www.digi.com/xbee/
13http://www.timedomain.com
14http://www.zb-connection.com/
15http://www.computime.com

Fig. 7. Examples of home network components deployed in the pro-
totype installation. Starting clockwise from the top left corner, they
depict a UWB platform measuring occupancy, Xbees sensor moni-
toring the boiler operation, a Zigbee HA plug module and a Zigbee
HA Thermostat.

stat, 2 HeatSave16 TRV Valves and 2 Billion17 SG3010
Power Meters. The UWB platform, is furthermore
equipped with its own processing unit, in order to per-
form the necessary computations to detect occupancy
and movement in the premises.

7. Experimental validation

This section presents the experimental investigation
of the deployed infrastructure, in terms of both perfor-
mance and learning capabilities. The main contribution
of this section is not to emulate/simulate a full scale
system or to attempt to examine human behavioural
patterns from a larger dataset. Instead, it is attempted
to make a preliminary investigation of the resources re-
quired for a simple one-case scenario, and demonstrate
the feasibility and accuracy of the proposed approach.
A single household is monitored, namely the proto-
type test-bed presented in Section 6. The information
and data examined, cover the period of one month. All
the sensors described in Section 6 were utilized, apart
from the UWB transceiver as this has not yet been in-
tegrated with the RECAP server on a run-time basis.

Initially, the bandwidth utilization will be reported
and the system response times will be discussed (Sec-
tion 7.1). Afterwards the predictive performance of the

16http://www.heat-save.com
17http://pem.billion.com

16 Nikolaos Vastardis et al. / A user behaviour-driven smart-Home gateway for energy management

rules returned by the two algorithms (C4.5 and RIP-
PER) is presented in Section 7.2. Finally, the inter-
pretability of these rules will be examined in Section
7.3, and a more general discussion on how the system
affects energy management is made in Section 7.4.

7.1. Bandwidth utilization & response times

The infrastructure deployed in the individual resi-
dences is composed of devices with very limited re-
sources. The proposed system is considered to take ad-
vantage of the installed broadband connection of the
house, if available. Therefore, the utilization of the
user’s bandwidth, as well as the total traffic gener-
ated in the VPN server supporting the whole operation
should be carefully considered. Various tests were also
performed to examine the response time of the system.
An important factor affecting this metric is the utiliza-
tion of the limited CPU and RAM resources of the
SBC employed. The status of the gateway of the pro-
totype test-bed was monitored in a normal state where
no user requests or RECAP updates were performed.
This represents the normal operation of the gateway
where it monitors the network devices, stores the col-
lected information and performs the policy engine rea-
soning. The average CPU utilization was found to be
around 9.8%, while the average active RAM utilization
lied at about 38.5%. These measurements demonstrate
the light weight solution.

In Figure 8, the inbound and outbound traffic dis-
tributions are seen for the VPN server over the period
of a month. Only the HG installed in the prototype
test-bed is considered. However, real-world conditions
were applied, where the generated traffic includes up-
dates in the gateway’s firmware, apart from collecting
the generated sensor data. The sensor data on the other
hand, are collected by RECAP every two hours.

Naturally, the inbound traffic in the VPN server net-
work interface exceeds the outbound and it lies very
concisely in the area just below 500 bits/s. This is
mainly caused by the 2-hour sensor data uploading
operation to the RECAP. On the other hand, the in-
bound traffic relates to the data sent to the HGs, such
as firmware updates and remote login for monitoring
and testing. This is why two local maximums can be
seen in the probability distribution of Figure 8, one at
around 200 and one at around 300 bit/s.

The response delay of the gateway was measured in
two use cases. The first one considers the amount of
time spent while redeploying rule scripts on the policy
engine of the HG, while the second one deals with the

Fig. 8. The inbound and outbound traffic probability distributions
over a monthly period.

Fig. 9. Delays for the execution of commands on the smart gateway.

delay until a Zigbee command has been successfully
completed by the system. According to the firmware
of the HG’s Zigbee module, every command gener-
ates an output, whether it has been completed success-
fully or not. So the time from which a user requests
a command from the web-interface, until the web-
browser (using Javascript and AJAX) receives a re-
sponse was measured. For both experiments 100 mea-
surements were performed, and their distributions in
milliseconds are depicted in Figure 9. The policy en-
gine script re-deployment is quite concise and usually
takes about 0.5 seconds. The time for an action to be
completed though, has a wider distribution and usually
takes longer. Action requests are seen to take almost
up to 1.2 seconds. This is caused by the traffic of the
Zigbee network, the amount of commands being pro-
cessed simultaneously, as well as the response time of
sleepy Zigbee devices.

7.2. Predictive performance of the rules

In this section, the predictive performance results
for the rules produced by the two algorithms tested
in this work, C4.5 and RIPPER, are presented. Ex-

Nikolaos Vastardis et al. / A user behaviour-driven smart-Home gateway for energy management 17

Table 4
Summary results for selected rules of C4.5

Device Rule Accuracy Precision Recall F-Measure
1 1 99.94% 100.00% 50.00% 66.67%
1 2 99.99% 66.67% 66.67% 66.67%
2 1 99.97% 66.67% 100.00% 80.00%
3 1 99.92% 66.67% 66.67% 66.67%

Mean 99.97% 75.25% 70.84% 70.00%

Table 5
Summary results for selected rules of RIPPER.

Device Rule Accuracy Precision Recall F-Measure
1 1 99.99% 66.67% 66.67% 66.67%
1 2 99.99% 100.00% 33.33% 50.00%
1 3 99.99% 83.33% 35.71% 50.00%
2 1 99.99% 80.00% 40.00% 53.33%
3 1 99.97% 96.43% 56.25% 71.05%

Mean 99.99% 81.29% 46.39% 58.21%

periments took place over the one month dataset
mentioned earlier, by using 10-fold cross-validation.
Cross-validation was used to avoid overfitting and to
increase generalization of the models [17,9].

It should be mentioned that each algorithm re-
turned a quite high number of rules: C4.5 returned
28 rules, and RIPPER returned 11 rules. However, as
was explained earlier in Steps 5b and 5c in Figure
6, two of the post-processing steps are pruning the
DoNothing() rules, and also removing the rules that
have a predictive performance below a certain thresh-
old r%. Hence, the results presented are the ones pro-
duced after the above post-processing has taken place.
As mentioned earlier, for the purposes of our experi-
ments r has been set equal to 50% for both the accu-
racy and the F-measure.

Results are summarised in Tables 4 and 5 for C4.5
and RIPPER, respectively. Each table consists of 6
columns. Results are presented by device and by indi-
vidual rule, so the first two colunns present the device
and rule number, respectively. As explained in Section
5.3, the results are presented in a per device basis, be-
cause each algorithm is run per device, so that it cre-
ates rules that are specific to the device at hand. Then,
the next four columns present the following statistics:
accuracy, precision, recall, and F-measure.

It can be observed in Tables 4 and 5, both C4.5
and RIPPER have performed equally extremely well
in terms of accuracy, since all rules returned an accu-
racy above 99.9%. One should keep in mind however,
that this success rate is ‘inflated’ by the high number of
DoNothing() events, which dominate the datasets.
To be more specific, the number of total actions in our
dataset was over 80,000 entries in which most of the

actions were DoNothing(). Only a few entries in
each case contained actual references to the user’s ac-
tions. Due to the extremely unbalanced nature of the
dataset, the high accuracy is not very informative. Con-
sequently, the use of F-measure becomes of paramount
importance.

With regards to the precision and recall metrics, re-
sults vary per algorithm and per rule. As it can be ob-
served in Tables 4 and 5, there are certain rules that are
doing extremely well in terms of precision, but not in
terms or recall (e.g. C4.5: Device 1, Rule 1), and other
rules that have a similar performance in both metrics
(e.g. C4.5: Device 2, Rule 1). Overall, C4.5 returned an
average precision of 75.25% and an average recall of
70.84%, while RIPPER returned averages of 81.29%
and 46.39%, respectively. Finally, the F-Measure of-
fers ‘combined’ information over precision and recall,
as it aggregates their results. We can observe that for
C4.5 the average F1 score is 70%, while for RIPPER
it is 58.21%.

Based on the above results, one could argue that
C4.5 is preferable to RIPPER, since they have sim-
ilar performance in terms of accuracy and precision,
but C4.5 has better results in terms of recall and F-
measure. However, one would have to look into the ac-
tual rules and judge if they are meaningful in a real-life
situation. Figure 10 presents Rule 1 returned by C4.5
for Device 2. As it can be observed, this rule evaluates
the boiler temperature from two different sensors, and
advices to turn off Device 2, which is a radiator. How-
ever, there is no correlation between the boiler temper-
ature and the radiator. Thus, this rule was coincidental,
and should thus be discarded as a non-meaningful rule.

On the other hand, rules returned by RIPPER are
found to be much more meaningful. To illustrate this,
Figure 11 is presented, which shows the rule returned
by RIPPER for Device 3. As it can be observed, this
rule advices to turn off Device 3, which is the TV, if the
time is 01:00 am. This in fact was a rule that had previ-
ously been entered in the policy engine, and RIPPER
successfully managed to uncover.

From the above, it can be concluded that user-
comprehensible rules are extremely important. In fact,
since the user is eventually going to be receiving the
rules and manually evaluating them, it needs to be en-
sured that the rules returned are easily interpretable
and comprehensible. Thus, the next section looks into
the interpretability of the rules of each algorithm.

18 Nikolaos Vastardis et al. / A user behaviour-driven smart-Home gateway for energy management

(BoilerTemp2 > 79.385667) and (BoilerTemp1 <= 80.040333) => Action=Device1.TurnOff()
(2.0/0.0)

Fig. 10. Rule 1 returned by C4.5 for Device 2.

(Time > 01:00) and (Time <= 01:00) => Action=Device3.TurnOff() (28.0/1.0)

Fig. 11. Rule 2 returned by RIPPER for Device 3.

Table 6
Prediction-explanation size for C4.5 and RIPPER

C4.5 RIPPER

Device1 7.53 2
Device2 7.71 2
Device3 4.6 2

7.3. Interpretability of rules

In order to quantify the interpretability of the dis-
covered rules, a measure called prediction-explanation
size [19] is used. This measure is defined as the av-
erage number of attributes-conditions (e.g., Time >
11.31) that are evaluated in the model in order to
predict the class value of an example. The average
is computed over all examples being classified. Ac-
cording to [19], the prediction-explanation size mea-
sure “provides an estimate of the number of attributes-
conditions that a user has to analyse in order to
interpret a model’s predictions, and those attribute-
conditions can be regarded as an explanation for the
class prediction”.

Table 6 presents the prediction-explanation size for
C4.5 and RIPPER, under each device, the lower the
value, the better the algorithm performance. As it can
be observed, RIPPER outperforms C4.5 in all three de-
vices for which they returned rules. In addition, C4.5’s
prediction-explanation size is bigger in a magnitude of
3 for Devices 1 and 2, and in a magnitude of 2 for De-
vice 3. Hence, the rules produced by RIPPER are more
easily interpretable than the ones returned by C4.5.

7.4. Summary & energy management extensions

Section 7 presented a set of experimental re-
sults generated from the prototype test-bed deployed.
The system’s operation was shown to be quite light
with relatively fast response times. In terms of the
behavioural pattern extraction, various classification
problem algorithms can be employed, provided that
they generates rules that can be translated into the em-

0.025

0.050

0.075

0.100

0.125

00:00:00 04:00:00 08:00:00 12:00:00 16:00:00 20:00:00

Time of day

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

K
W

h
)

Average Energy Consumption

Fig. 12. The average daily electricity consumption distribution.

ployed PDL. This however, lies beyond the scope of
this paper, as our goal was to present the infrastructure
and not look for the optimal classification algorithm.
Two of the most well known examples (C4.5 and RIP-
PER) were tested. The interpretability of the discov-
ered patterns (rules) was identified as significant met-
ric of rule suitability, since it is directly relates to the
comprehensiveness and usability of the produced out-
put. In general, the computational time to return the
classification rules for a 10-fold cross-validation was
very fast, and took less than 1 minute per algorithm. Of
course, this time depends on the length of the dataset
used for deriving the rules. In our experiments, the one
month dataset contains approximately 80,000 entries.

In terms of energy management, users, especially
of different age groups and in different locations, tend
to have quite diverse daily habits. Disregarding that,
while making energy related decisions, may lead to
low user satisfaction and thus, complete failure of
the energy consumption reduction effort. On the other
hand, personalized energy reduction strategies can be
much more specific and effective. Figure 12 illustrates
the unique energy fingerprint of the monitored resi-
dence, depicting the average electricity consumption
during the examined period, in the monitored house-
hold. The consumption displays two local maximums,

Nikolaos Vastardis et al. / A user behaviour-driven smart-Home gateway for energy management 19

one around 11:30am and one at about 10:00pm. The
first is caused mainly by house chores like cooking and
cleaning, while the latter is driven by consumption re-
lated to the lighting, cooking, heating and TV usage.
Based on the general knowledge provided by the sen-
sor data collected, there are a number of procedural
steps to be taken, while devising an appropriate con-
sumption reduction strategy.

1. First the user’s habits should be identified.
2. In the second step, advice for energy manage-

ment can be offered using the DANCER messag-
ing capabilities (Section 4.1.1). For example, if
it is detected that the kettle is widely used, the
system can suggest that the user should boil only
the required amount of water. Generic advices on
devices that might not even be used, can lead to
confusion and take the focus away from advices
that could actually prove helpful.

3. In DANCER, policy rules conforming to the
user’s behavioural patterns can also be devised
to reduce the wasteful actions of the user. In ad-
dition, other generic rules can also be suggested
(e.g. turn-off lights in a room when no-one is
present), provided they don’t conflict with the
user’s behavioural patterns.

4. In the final step, the residents/users need to ap-
prove the devised strategy and even alter it, ac-
cording to the their liking. This ensures that the
individuals affected by the system’s operation
have the ability to accept or reject the feedback.

The second and third steps of the construction of
the energy management strategies are exactly the point
where personalization is required. A fully generic out-
put would normally cause great inconvenience if the
provided energy saving rules did not take into account
the user’s preferences. For example, one of the rules
generated by JRip dictates that between 10:33 and
10:34, the thermostat should be turned on with the set-
point adjusted at about 20-22C◦. In these cases, the
set-point could be further lowered by a degree, without
any major difference in the perceivable user comfort
levels.

8. Conclusion

This document focused on the architectural design
and individual software components of the DANCER
energy-monitoring gateway. Initially, the whole sys-
tem architecture was outlined. Afterwards the general

software design of the gateway was described and the
initial prototype system was introduced. One of the
main components of the gateway is the middleware,
which enables the communication between the gate-
way and all other local or remote software modules.
On top of the middleware a number of software ser-
vices such as the LESDMA and the Behaviour Pattern
Extractor are running, enabling the energy saving, au-
tomation and learning functionality of the system.

This work, apart from presenting the architecture
and components of the gateway, also demonstrates the
variety of tools and technologies that were required to
create the described system. Additionally, it stresses
out that for a successful home energy monitoring and
automation system, modularity and extendibility, as
well as being user-centric are a necessity. The pro-
posed solution meets these criteria, as it can devise en-
ergy saving policies in a per user/device basis and also
has the ability of being deployed in a single gateway,
or being placed in multiple physical locations.

It has been demonstrated that the DANCER system
requires minimal bandwidth, while it provides quick
response times to the user’s commands. These are all
necessary requirements when the user satisfaction is
involved, but also influence the scalability of the sys-
tem. The behavioural pattern detection mechanism is
performed off-line in the RECAP server, employing
classification algorithms such as C4.5 and RIPPER.
Both tested algorithms, demonstrated excellent accu-
racy levels; this was mainly owed to the fact that the
user actions are quite sparse. Therefore, the also con-
sidered F-measure metric proved to be much more
helpful in determining a rule’s suitability. In terms of
interpretability, it seems that the RIPPER algorithm
creates much more concise and comprehensive poli-
cies that are more suitable for the employed scenario.
Consequently, these preliminary results indicate that it
would be more suitable for a larger scale deployment.
Nevertheless, it has already been mentioned that also
other machine learning algorithms could have been in-
corporated. It was however, beyond the scope of the
research agenda to look for the optimal learning algo-
rithm. This work focused mainly in the capabilities of
the behavioural pattern extractor of RECAP.

As far as future work is concerned, it is planned
to investigate the possibilities for conducting detailed
studies relating to different aspects of the system, such
as visualisation or the security of the middleware API.
Additionally, the deployment of DANCER is planned,
over a larger number of residences and monitor the en-
ergy consumption behaviour of the users. The project

20 Nikolaos Vastardis et al. / A user behaviour-driven smart-Home gateway for energy management

is already in collaboration with the Croydon District
Council, which has provided the team with access to
several recently built smart metered dwellings meeting
a minimum standard of Code for Sustainable Homes
(Level 4). Finally, various other behavioural pattern
extraction methods will be examined, employing tech-
niques such as genetic algorithms and neural networks.
Since human behaviour is known to be hard to model,
this operation will pose an interesting challenge to the
project.

Acknowledgments

The work presented in the paper was funded
by UK EPSRC project DANCER (EP/K002473/1;
EP/K002643/1). The authors would also like to thank
the Telegesis team for their most valuable advices.

References

[1] D. Arnold, M. Sankur, and D.M. Auslander. The next gen-
eration energy information gateway for use in residential and
commercial environments. In Power and Energy Society Gen-
eral Meeting (PES), 2013 IEEE, pages 1–5, July 2013. doi:
10.1109/PESMG.2013.6672625.

[2] M.Z. Bjelica, B. Mrazovac, V. Vojnovic, and I. Papp. Gate-
way device for energy-saving cloud-enabled smart homes. In
MIPRO, 2012 Proceedings of the 35th International Conven-
tion, pages 865–868, May 2012.

[3] Centre for Sustainable Energy. Smart and happy me-
ters. http://www.cse.org.uk/projects/view/
1192. Accessed: 18-10-2014.

[4] Jonghwa Choi, Dongkyoo Shin, and Dongil Shin. Research
and implementation of the context-aware middleware for con-
trolling home appliances. Consumer Electronics, IEEE Trans-
actions on, 51(1):301–306, Feb 2005. ISSN 0098-3063. doi:
10.1109/TCE.2005.1405736.

[5] W.W. Cohen. Fast effective rule induction. In Proceedings of
the 12th International Conference on Machine Learning, pages
115–123. Morgan Kaufmann, 1995.

[6] Diane J. Cook, Juan C. Augusto, and Vikramaditya R. Jakkula.
Ambient intelligence: Technologies, applications, and oppor-
tunities. Pervasive and Mobile Computing, 5(4):277 – 298,
2009. ISSN 1574-1192. doi: http://dx.doi.org/10.1016/j.
pmcj.2009.04.001. URL http://www.sciencedirect.
com/science/article/pii/S157411920900025X.

[7] Herbert R. Costa and Alessandro Neve. Study on appli-
cation of a neuro-fuzzy models in air conditioning systems.
Soft Comput., 19(4):929–937, April 2015. ISSN 1432-7643.
doi: 10.1007/s00500-014-1431-5. URL http://dx.doi.
org/10.1007/s00500-014-1431-5.

[8] H. Cruz-Sanchez, L. Havet, M. Chehaider, and Ye-Qiong Song.
Mpigate: A solution to use heterogeneous networks for assisted
living applications. In Ubiquitous Intelligence Computing and
9th International Conference on Autonomic Trusted Comput-

ing (UIC/ATC), 2012 9th International Conference on, pages
104–111, Sept 2012. doi: 10.1109/UIC-ATC.2012.84.

[9] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification.
John Wiley and Sons, 2nd ed., 2001.

[10] Z.M. Fadlullah, M.M. Fouda, N. Kato, A. Takeuchi,
N. Iwasaki, and Y. Nozaki. Toward intelligent machine-to-
machine communications in smart grid. Communications
Magazine, IEEE, 49(4):60–65, April 2011. ISSN 0163-6804.
doi: 10.1109/MCOM.2011.5741147.

[11] Young-Guk Ha. Dynamic integration of zigbee home
networks into home gateways using osgi service registry.
IEEE Trans. Consumer Electronics, 55(2):470–476, 2009.
URL http://dblp.uni-trier.de/db/journals/
tce/tce55.html\#Ha09.

[12] M. Hasan, K.A.P. Ngoc, Young-Koo Lee, and Sungyoung Lee.
Preference learning on an osgi based home gateway. Consumer
Electronics, IEEE Transactions on, 55(3):1322–1329, August
2009. ISSN 0098-3063. doi: 10.1109/TCE.2009.5277995.

[13] Jing He, Hao Liu, and Jinlin Wan. Assemble algorithm based
on user behaviors in the smart home. In Computational and
Information Sciences (ICCIS), 2013 Fifth International Con-
ference on, pages 1928–1931, June 2013. doi: 10.1109/ICCIS.
2013.504.

[14] Palmer Jason and Ian Cooper. Smart metering implementa-
tion programme government response to the consultation on
the second version of the smart metering equipment technical
specifications part 1. Technical report, Department of Energy
and Climate Change of the UK, 2013.

[15] Petri Jokela, András Zahemszky, Christian Esteve Rothenberg,
Somaya Arianfar, and Pekka Nikander. Lipsin: Line speed pub-
lish/subscribe inter-networking. SIGCOMM Comput. Com-
mun. Rev., 39(4):195–206, August 2009. ISSN 0146-4833. doi:
10.1145/1594977.1592592. URL http://doi.acm.org/
10.1145/1594977.1592592.

[16] C. McParland. OpenADR open source toolkit: Developing
open source software for the smart grid. In Power and Energy
Society General Meeting, 2011 IEEE, pages 1–7, July 2011.
doi: 10.1109/PES.2011.6039816.

[17] T.M. Mitchell. Machine learning. McGraw-Hill, Boston, 1997.
[18] M.Victoria Moreno, Luc Dufour, AntonioF. Skarmeta, An-

tonioJ. Jara, Dominique Genoud, Bruno Ladevie, and Jean-
Jacques Bezian. Big data: the key to energy efficiency in
smart buildings. Soft Computing, pages 1–14, 2015. ISSN
1432-7643. doi: 10.1007/s00500-015-1679-4. URL http:
//dx.doi.org/10.1007/s00500-015-1679-4.

[19] F.E.B. Otero and A.A. Freitas. Improving the interpretability of
classification rules discovered by an ant colony algorithm im-
proving the interpretability of classification rules discovered by
an ant colony algorithm improving the interpretability of clasi-
fication rules discovered by an ant colony algorithm. In Pro-
ceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO ’13), pages 73–80, 2013.

[20] J. Ross Quinlan. C4.5: programs for machine learning. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.
ISBN 1-55860-238-0.

[21] N. Saito. Ecological home network: An overview. Proceedings
of the IEEE, 101(11):2428–2435, Nov 2013. ISSN 0018-9219.
doi: 10.1109/JPROC.2013.2277782.

[22] Marco Severini, Stefano Squartini, and Francesco Piazza.
Hybrid soft computing algorithmic framework for smart
home energy management. Soft Comput., 17(11):1983–

Nikolaos Vastardis et al. / A user behaviour-driven smart-Home gateway for energy management 21

2005, November 2013. ISSN 1432-7643. doi: 10.1007/
s00500-013-1118-3. URL http://dx.doi.org/10.
1007/s00500-013-1118-3.

[23] Nikolaos Vastardis, Mounir Adjrad, Kathryn Buchanan, Zhin-
ing Liao, Christian Koch, Riccardo Russo, Kun Yang, Moham-
mad Ghavami, Ben Anderson, and Sandra Dudley. A user-
centric system architecture for residential energy consumption
reduction. In OnlineGreenComm’14. IEEE, 2014.

[24] Markus Weiss, Claire-Michelle Loock, Thorsten Staake,
Friedemann Mattern, and Elgar Fleisch. Evaluating mobile
phones as energy consumption feedback devices. In Patrick
Sénac, Max Ott, and Aruna Seneviratne, editors, MobiQuitous,
volume 73 of Lecture Notes of the Institute for Computer Sci-
ences, Social Informatics and Telecommunications Engineer-
ing, pages 63–77. Springer, 2010. ISBN 978-3-642-29153-1.

[25] H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2nd edi-

tion, 2005.
[26] Kun Yang, S. Ou, A Liotta, and I Henning. Composition

of context-aware services using policies and models. In
Global Telecommunications Conference, 2005. GLOBECOM
’05. IEEE, volume 2, pages 5 pp.–, Nov 2005. doi: 10.1109/
GLOCOM.2005.1577799.

[27] Zhiwen Yu, Xingshe Zhou, Zhiyong Yu, Daqing Zhang, and
Chung-Yau Chin. An osgi-based infrastructure for context-
aware multimedia services. Communications Magazine, IEEE,
44(10):136–142, Oct 2006. ISSN 0163-6804. doi: 10.1109/
MCOM.2006.1710425.

[28] Michael Zillgith, David Nestle, and Michael Wagner. Security
architecture of the ogema 2.0 home energy management sys-
tem. In Security in Critical Infrastructures Today, Proceedings
of International ETG-Congress 2013; Symposium 1:, pages 1–
6, Nov 2013.

