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Abstract—The deployment of fibre optics poses a huge in-
vestment risk, thus telecommunication companies are skeptical
about replacing copper given the high cost of doing so. Over
recent times, the usage of the internet has changed and led to a
need for fibre optics. The decision on whether to deploy or not is
made through the use of complex models. However, the problem
being that deployment plans are manually predefined based on
previous knowledge, this process does not guarantee that the
plans are optimal. This paper demonstrates that the deployment
of fibre optics can be optimised by using intelligent algorithms.
We implemented a metaheuristic (Guided Local Search) to the
problem to demonstrate the effectiveness and benefit of looking
for an optimal deployment plan. Results indicate that Guided
Local Search lead to a significant increase in the profit and can
address the problem of finding an optimal deployment plan.

I. INTRODUCTION

The demand for high speed internet has increased dra-
matically over the years due to changes in internet usage.
Ideally, telecommunication companies would like to provide
fibre optics for all consumers. The problem arising is the
substantial cost associated with replacing the copper wires.
This poses a huge investment risk for companies [1], given
the cost per connection differs from different concentrations of
customers willing to switch to fibre optics in areas. Different
options exist, such as fibre to the home (FTTH) and fibre to
the cabinet (FTTC). However, this paper uses the general term
called fibre to the x (FTTx).

In order for telecommunication companies to make a
decision on whether they should deploy fibre optics, a busi-
ness plan based on a techno-economic model is employed.
Techno-economic models are tools that can take into account
both technical (e.g. bandwidth requirements and length of
cable) and financial fields (e.g. number of customers and
cost). Significant research exists for the economical benefit
by applying techno-economic models in telecommunications
such as [1]. Following this, work has been done in providing
a foundation for benefits derived from undertaking techno-
economic analysis. [2]-[7] all address the issues surrounding
the economic side of the deployment of fibre optics with
different focuses.

[4] introduces a novel approach by including technical
aspects using Geographic Information Systems to map real
life areas. The paper also applies an algorithm in an attempt
to optimise deployment, to gain more accurate results. Simi-
larly, [8] looks to provide an optimised layout of a network.
Despite all the research that has gone into techno-economic

models for telecommunications, the goal for companies is to
maximise profit. Both in industry and literature, there are only
a handful of plans that are tested based on past knowledge
and experience [9]. Once the plans are chosen, which are
then tested for their profitability. Finally, a decision is made
based on which plan yields the highest profit. However, if the
information provided is incorrect or outdated, the plans may be
suboptimal. In this paper we help to address the problem, that
decisions to deploy fibre optics are not necessarily optimal.

Consider the following scenario. If telecommunication
companies aim to deploy fibre optics over 4 years in a city,
made up of 10 areas. The companies would be faced with a
total of 9,765,625 (510) different possibilities. It is unlikely that
taking three or five different plans and evaluating them against
one another will result in an optimum deployment. The impact
from this gap in the literature, is that telecommunication
companies could be missing out on more profitable plans.

An approach to find an optimal deployment plan without
past knowledge and experience, can be to use metaheuristics.
[10] is the first to tackle the problem of finding an optimum
deployment plan by applying Genetic Algorithm (GA). Results
of applying GA lead to an increase of about 3% in profit,
around $17m. Moreover, a more recent extension [11] included
three more algorithms.

The aim of this paper is to extend the work by [10][11] to
optimise the deployment of fibre optics. The extension will
involve implementing a new metaheuristic to the problem,
Guided Local Search (GLS). GLS is chosen over similar
optimisation algorithms, because of the effectiveness shown
[12]-[15]. The main benefit of GLS is its ability to overcome
being stuck in a local optima. In order for a comparison to be
drawn, the best performing algorithms from previous work is
used, Simple Hill Climbing (SHC) and Simple Hill Climbing
with Move Swaps (SHC-MS).

The remainder of the paper is as follows: Section II outlines
the economic model, for our algorithms to work on. Section III
presents the algorithms used in this paper. Section IV presents
the experimental design. Section V presents and analyses the
results. Section VI concludes the findings.

II. ECONOMIC MODEL

As we are extending the work previously done by [10][11],
it falls outside the scope of this paper to present a detailed
techno-economic model for two reasons. Numerous number of
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models already exist in the literature and economic decisions
mainly influence the deployment of FTTx.

A. Overview

Given that the deployment of FTTx is across a city, we
define that a city can be divided into a number of areas.
The model used in this paper defines areas differently by
identifying three aspects. Firstly, all areas have a different
population size. Secondly, each area is identified by its own
social category. The categories can either be a business, high-
income, medium-income and low-income. Finally, each area
is part of a town or is a town itself. The three aspects that
constitute an area have been randomly assigned and do not
represent a real city.

The economic model used in this paper consists of different
parameters [10][11], the parameters are the inputs we give the
model to generate a profit figure. The following parameters are
used:

1) Rollout customers. The population of the area.
2) Rental service customers. Customers that are cur-

rently using the rental services.
3) Rental service tariffs. The cost for the customer using

rental services.
4) Pay as you go (PAYG) service customers. Customers

that are currently using the PAYG services.
5) PAYG tariffs. The cost for the customer using PAYG

services.
6) Service installation. A one time cost for the customer

when he/she takes up FTTx.
7) Innovators. Customers that take up FTTx as soon as

the service is made available.
8) Imitators. Customers that wait and see before taking

up FTTx.
9) Lost customers. Customers that leave FTTx for any

reason, such as finding a cheaper deal.
10) Interest rate. The cost of borrowing money for the

investment of deploying FTTx.
11) Budget. The maximum investment allowed per year.
12) Study period. The length of time the model is run.
13) Rollout period. The number of years to deploy FTTx.
14) No income period. The number of years taken to

bring the service up for customers to use.

An additional input to the model is the deployment plan,
where we specify for an area the year in which FTTx should
be deployed to. Once a deployment plan has been generated,
the above parameters are used in the following steps for each
year of the study period:

1) Calculate innovator customers
2) Calculate imitator customers
3) Calculate total customers
4) Calculate lost customers
5) Subtract lost customers from total customers
6) Re-calculate total customers
7) Calculate annual revenue
8) Calculate annual cost
9) Calculate profit

10) Calculate Present Value
11) Calculate Net Present Value

The previous steps are explained in more detail below.

B. Innovators

Innovators are those whom adopt FTTx as soon as it
becomes available. The percentage of innovators that take up
FTTx also depend upon the social category of the area. So in
order to calculate the total innovators for an area, we take the
product of the percentage of innovators (different percentage
depending on social category) and the rollout customers. It is
important to note that innovators are only calculated once per
area, and the calculation is from the year following the no
income period until the end of the rollout period. The year
in which the innovators is calculated is dependent upon when
the area will be deployed to. An example showing how the
innovators are calculated is given in Section II-D.

C. Imitators

Imitators are those whom wait and see before joining
FTTx. Similar to innovators, they are based on a percentage
that differs depending on the social category they belong
to. Like the innovators, the total imitators for an area is
the product of the percentage of imitators and the rollout
customers. However, because these have a ‘wait and see’
attitude, imitators can only be calculated starting the year after
the area has been deployed to. In other words, they initially
follow the innovators the following year, in subsequent years
the imitators will imitate the imitators. An example showing
how the imitators are calculated is given in Section II-D.

D. Total customers

Once the innovators and imitators have been calculated, the
sum of the two for a given year gives us the total customers.
An illustration is shown below for how to calculate the total
customers.

TABLE I.
CALCULATING THE TOTAL CUSTOMERS

Customers Year 0 Year 1 Year 2 Year 3

Rollout customers 100,000 50,000 0 0
Innovators 0 25,000 12,500 0
Imitators 0 0 7,500 10,500

Total new customers 0 25,000 20,000 10,500

Table I shows in Year 0, we rollout to 100,000 potential
customers and in Year 1, we rollout to a further 50,000
potential customers. After Year 1, we do not deploy to any new
customers. For this particular example, we assume that there
only exists one social category. The innovators percentage is
25%, the imitators percentage is 10%, the no income period
is one year and that the percentages remain unchanged each
year.

Since the no income period lasts for a single year, we have
no customers for Year 0 as the services are not available for
customers to take-up. Therefore, for Year 1, there are 25,000
(25% * 100,000) innovators. Given that the imitators require
a year to ‘wait and see’ no imitators are calculated for Year
1. For Year 2, there are 12,500 more innovators, which are
the new customers from the previous year (25% * 50,000).
We also have the imitators from the remaining customers
that didn’t take it up in Year 1, in this example there are



7,500. It is calculated by taking the difference between the
Year 0 customers (100,000) and the innovators who joined in
Year 1 (25,000), then multiplying the difference of 75,000 by
10% (imitator percentage). Thus, total customers for Year 2 is
20,000 (7,500 + 12,500).

In Year 3, as there are no new customers to roll out to
in Year 2, hence there are no innovators, only imitators. The
imitators are calculated in the following way. Firstly, take
the difference between the remaining customers from Year
0 (75,000) and the imitators who joined in Year 2 (7,500).
Secondly, multiply the difference of 67,500 by 10%, giving
6,750 new customers from the rollout in Year 0. To calculate
the imitators from the customers rolled out to in Year 1, take
the difference of Year 1 customers (50,000) and the innovators
calculated in Year 2 (12,500). Then, multiply the difference
(37,500) by 10% to get 3,750 imitators. It gives us a grand
total of 10,500 imitators (6,750 + 3,750) for Year 3.

This method for calculating the total customers is carried
out in the same way for the remainder of the study period.

E. Lost customers

To make the model more realistic, it is common for those
who are using FTTx to leave the service. Whether they are
switching to a competitors product or simply do not require
the service any more. Similar to imitators and innovators,
different social categories have different percentages of lost
customers, because a low income family may no longer be
able to afford using FTTx. The product of the lost customer
percentage (social category dependent) and the total customers
returns the lost customers.

F. Total customers

Recalculate the total number of customers by removing
those who left the service. The lost customers are then re-
added back into the rollout customers.

G. Annual revenue

There are three sources of revenue for the company: rental
services, PAYG services and service installation.

The rental services and PAYG services are both calculated
in the same way. The number of customers on each plan is
expressed by the product of the percentage of each service
and the total customers. The calculation of revenue generated
per month is the product of the number of customers on each
service plan and the tariff for each plan.

In order to work out the annual revenue we need to multiply
the revenue per month by 12. As the total number of customers
are spread out over the year, an average annual revenue figure
needs to be calculated. To give a reasonable estimate under the
assumption that customers join linearly, dividing the annual
revenue by 2, a rough average can be calculated.

The service installation revenue is the product of the new
customers for the year and the service installation charge.
Then, take the sum of annual average revenue and the service
installation to calculate the total revenue for a year.

H. Annual Cost

The annual cost is calculated by the sum of capital expen-
diture (CAPEX) and operational expenditure (OPEX). CAPEX
is a one time cost per area when it is deployed to and OPEX
is a reoccurring annual cost from deployment till the end of
the study period. CAPEX refers to the infrastructure cost, i.e.
the cost of tunnelling and laying the cables. OPEX refers to
the on going costs, such as maintenance charges and utilities.

I. Profit

The difference between the annual revenue and cost is
defined as the profit or loss for the given year.

J. Present Value

The Present Value (PV) is the future amount of money,
discounted to reflect the time value of money. The PV of profit
P with a given interest rate i, t time periods in the future is
given by:

Pt =
P

(1 + i)t
. (1)

K. Net Present Value

Net Present Value (NPV) is the sum of all PVs over the
study period. The NPV is given by:

n∑
t=0

P

(1 + i)t
, (2)

where n is the study period.

III. ALGORITHMS

The economic model presented only takes a deployment
plan as a single input. This limits us of only being able to
evaluate a single manually generated plan. To overcome this
limitation, we need to generate and evaluate multiple plans in
order to find the most profitable one. To draw a comparison
for the effectiveness among of our algorithms, there must be
some consistency in the selected algorithms and how they
interact with the economic model. As mentioned earlier, we
are comparing GLS to the best performing algorithms from
[11] SHC and SHC-MS.

A. Representation

The deployment plan mentioned in Section II-A is treated
as an input and is represented by a list of numbers. Firstly,
the length of the list indicates the number of areas we are
interested in rolling out to. Secondly, each position within that
list represents the area that the deployment plan relates to. In
other words, the first element of the list relates to ‘Area 1’,
the second element of the list relates to ‘Area 2’ and so on.
Finally, each element within the list requires the year in which
each area deploys to, consisting of a numerical value between
0 and the rollout period.

To give a visual example of how we represent our deploy-
ment plan, see Figure 1 below.

From Figure 1 we can see the years that each area will
deploy to. Note that you can have many areas deploying in



Fig. 1. 10 areas representing our deployment plan

.Area 1 Area 7[
2 1 4 2 3 0 0 4 2 3

]
Area 3 Area 10

the same year. For example, areas 1 and 9 are both deploying
in the second year, you can deploy to as many areas so long
as it does not violate the annual budget. Additionally, you can
have areas where no deployment occurs (areas 6 and 7).

B. Fitness function

A fitness function needs to be assigned to compare de-
ployment plans. For this paper the following definition will be
used:

Fitness = NPV. (3)

Any output could be used depending on what is hoped
to achieve through the model. For example, if the aim is
to maximise customers, the fitness function is equal to total
customers. As our aim is to maximise profit, then assigning
the fitness function as such is the most appropriate. Thus, the
most ‘fit’ deployment plan will be the most profitable.

Next we present the three algorithms that are built around
the deployment plan and fitness function. First we will discuss
the first two local search techniques before moving on to GLS.

C. SHC

SHC is a metaheurisitc, which is part of the local search
family and is used for optimising computationally complex
problems. Local search algorithms have been very successful
in tackling large scale problems, such as the Travelling Sales-
person Problem [16]. SHC initiates by randomly generating a
deployment plan, similar to that as shown in Figure 1. SHC
operates by making iterative improvements to the deployment
plan in order to arrive at a new neighbourhood i.e. a new
deployment plan, whilst converging towards the optimum
position. The process begins by randomly visiting each area,
until all elements within the deployment plan are visited but are
not necessarily in sequential order. Whenever SHC lands on a
particular area, it reduces the value of that area and tests the
new fitness of the deployment plan. If the fitness level is higher
than the previous deployment plan, then SHC moves to another
area within the deployment plan. Otherwise, it continues to
reduce the value of the element until either a higher fitness is
returned, or no improvement can be made. When all areas
within the deployment plan have been visited, the search
continues in the same way until there are no neighbouring
plans that results in an improvement in fitness. Therefore, an
optimal deployment plan has been found.

D. SHC-MS

SHC-MS is a combination of two algorithms, SHC and
Move Swaps (MS). Essentially, the algorithm is the same as
SHC, but SHC-MS has an additional way of modifying a

deployment plan using MS. MS allows for two areas to swap
with each other. To determine whether a move making a move
either decreases the value of the area by 1 or performs a swap
with another area. A probability is assigned to the MS and is
calculated when SHC lands on an area.

E. Guided Local Search

GLS is a metaheuristic that is used to assist local search
techniques to escape from the problem of being stuck in local
optimas, by the use of penalties, i.e. GLS sits on top of a local
search algorithm. GLS penalises costly features present within
a solution and so deters the local search from visiting such
solutions again. In order to apply GLS to optimise our deploy-
ment plan, solution features must be defined for the problem
at hand. A feature is a property that either exists or not in the
given solution. For the purpose of this problem the solution
features are the years that deployment can take place. For each
feature present in the solution, there is a cost associated with it.
The cost is mathematically calculated according to the feature
present, so in the case of our deployment plan the cost of our
features would be the total operating and capital expenditure
per area over the study period.

Whether a feature fij (i refers to area and j refers to
deployment year) is present in the current solution or not is
given by:

Iij(s) =

{
1 if solution s has property ij
0 otherwise

. (4)

GLS makes use of these features by combining the penalties
with our fitness function. This combination means that we are
effectively making our deployment plan more expensive and
decreasing our fitness function. The result of this combination
is an augmented fitness function (denoted as h(s), where s is
a deployment plan) as defined below:

h(s) = g(s)− λ ·
M∑
i=1
j=0

pij · Iij(s), (5)

where g(s) is the fitness function for deployment plan s, M is
the total number of features, pij is the penalty value according
to fij , and λ is the regularization parameter. λ is necessary
as it allows us to control how much the penalties influence the
augmented fitness function. If λ is set at 0, then GLS would
never be able to escape the local maximum. On the other hand,
if λ is set to 1, then this completely removes the penalised
feature, which is ideal. However, if information is incorrect, it
could potentially remove useful features. The target is to now
work out an effective value for λ [17]. In order to do so, we
use the formula from [17]. A new parameter α is introduced
shown by the following formula:

λ = α · g(s)/(Fs), (6)

where g(s) is the original fitness function, Fs is the number of
features present in the solution and α is our lambda coefficient,
which is dependent upon the problem at hand.

For every local search that gets stuck in a local maxima,
modifications are made to the augmented fitness function.



Local search then resumes from the last deployment plan.
However, the fitness function is less than it previously is,
because the fitness of that plan has been penalised allowing
the algorithm to move out of its local maxima. GLS works by
incrementing the penalty value of those features whose utility
(denoted as u(s, fij)) is maximised, the utility of each feature
is given as:

argmax
s,fij

u(s, fij) = Iij(s) ·
cij

1 + pij
, (7)

where cij is the cost of the feature present in the deployment
plan s and pij is the penalty of the feature present in deploy-
ment plan s.

To avoid continuously penalising areas with high cost, the
penalty parameter pij is included so that it avoids bias and
allows for penalties to be allocated more diversely. When local
search gets stuck in the next local maximum then the process
repeats itself.

IV. EXPERIMENTAL DESIGN

This section establishs the initial setup of our model in
order to run experiments using our algorithms. Different simu-
lations need to be created in order to test the effectiveness. The
different simulations looks to maximise our fitness function
(as specified in Section III-B) as long as it fits within the
constraints presented next.

A. Constraints

This first constraint limits the number of areas deployed
to within a certain year, as long as the cost of deployment
for the year does not exceed the budget level. Having a
budget constraint is a very typical problem for any large
scale investment project as companies simply do not have the
resources to carry out such a large scale activity. The reasons
could be that the telecommunication companies are restricted
by money, labour, capital or time.

The second constraint has a maximum number of areas per
town to be deployed to in a certain year, given a project with
activities such as digging up roads to lay new cable may be
disruptive.

The third constraint forbids us from deploying to too many
areas in close proximity to each other, again given the potential
disruption caused.

Finally, the fourth constraint is to force the deployment of
FTTx to an area within a specified time frame. This is common
in real life as it may be necessary to go through certain areas
first in order to reach others.

B. Experiments

In order to evaluate the algorithms, three experiments are
conducted for 100 areas and 500 areas using the constraints
outlined in Section IV-A.

Experiment one will introduce constraint one. The budget
that will be used for the experiments given in Section IV-D.

Experiment two will introduce constraints two and three.
Constraint two limits the number of areas within a town,

dependent upon the size of the town e.g. if a town consists
of 10 areas then only a maximum of 3 areas per year can
be deployed to. Constraint three will be that the deployment
plan cannot have 3 or more areas in a row having the same
deployment year.

Experiment three introduces constraint four. The areas
chosen to be forced are assigned randomly per town, at least
one per town.

C. Experimental setup

The values we use for the parameters are artificially made
up specifically for the model. Ideally, the use of real data would
be useful so that this approach can be applied to a real city.
However, the experimental nature of this paper allows us to
deal with the problem in a more controlled environment.

D. Parameter settings

Initially, the population per area is based on a random
number that follows a Normal distribution from 0 to 10,000
customers, where a customer may be either a household or
a business. Each area is assigned a social category as is
mentioned in Section II-A, business (b), high income (h),
medium (m) and low income (l). The total number of each
social category is chosen and is shown in Table II.

TABLE II.
THE NUMBER OF AREAS PER SOCIAL CATEGORY FOR TWO DIFFERENT

AREA SCENARIOS

Social category Number per 100 areas Number per 500 areas

Business 3 15
High income 10 50
Medium income 33 165
Low income 54 270

The different social categories are important, because those
from a higher income area would be more available to take up
FTTx. Alternatively, it might be too expensive for those of low
income. This is reflected by the different percentages of uptake
among innovators and imitators, as well as the remaining
parameters values as shown in Table III.

TABLE III.
THE PARAMETERS FOR OUR ECONOMIC MODEL

Name of parameter Input values

Number of areas 100, 500
Social categories 4
Rental services customer percentage 100%
Rental services tariffs £80 per month
PAYG services percentage 0%
PAYG tariffs £15
Service installation £150
Innovators percentage (b, h, m, l) 25%, 20%, 15%, 10%
Imitators percentage (b, h, m, l) 20%, 15%, 10%, 5%
Lost customer percentage (b, h, m, l) 5%, 5%, 5%, 5%
Interest rate 10% per annum
Budget 100 areas £60,000,000 per year
Budget 500 areas £300,000,000 per year
Study period 20 years
Rollout period 4 years
No income period 1 year



From this table, we assume that all customers use rental
services. This is purely for simplicity and has no effect on
the results of our experiments. The value of £80 for the rental
service charge is what exists within the literature [18]. We
also identify different uptake rates for innovators and imitators
given their social category. All the values are kept the same
throughout the study period and all experiments use the same
values. 100 and 500 areas are used throughout the experiments
had have a budget of £60,000,000 and £300,000,000 respec-
tively.

The CAPEX and OPEX per area are £2,500,000 and
£40,000 respectively, these values are consistent with what
appears in the literature [19]. As is mentioned in Section II-H,
CAPEX only applies to the rollout period and OPEX applies
across the whole study period. Due to these costs and our
budget, only a certain number of areas can be deployed to in
a given year. Therefore, it is up to the algorithms to determine
which areas are the least profitable to leave out.

Additionally, areas within a town may share common
resources such as service stations or connection boxes. This
shared cost only gets calculated once for an area when de-
ployment occurs for a certain town.

E. Algorithm settings

For both SHC and SHC-MS, we continue running until
a local optimum position has been located, causing the loop
to stop. For SHC-MS, in order to determine whether a swap
will occur requires a probability. In this paper, the probability
is chosen at 0.5, a 50% chance of swapping, based on the
effectiveness from [11].

For GLS, the algorithm makes a call to the local search
100 times before returning the best plan found, based on initial
tests of different calls. Regarding the tuning of λ mentioned
in Section III-E, tests are conducted to calculate an effective
α value and concludes that 0.001 is the most appropriate.

For statistical purposes, we run each algorithm for 50
individual runs. In order for a fairer comparison to be made
among algorithms, the initial deployment plan used are ran-
domly generated. For every run, a new randomly generated
plan is used. Therefore, there are a total of 50 different initial
deployment plans for our algorithms to work through.

V. RESULTS

In this section, we discuss the results from our three
experiments under both 100 and 500 areas. In order to compare
how well the algorithms performed against each other, they
are ranked accordingly using the Friedman test [20]. The
results are then checked at a given significance level, to
see if there is a significant difference among algorithms. In
other words, determining whether we accept or reject our
null hypothesis. Next, we determine which algorithms are
significantly different, by using the Holm post-hoc test. Since
GLS sits on top of SHC and SHC-MS, we refer to these as
GLS-SHC and GLS-SHC-MS respectively.

Looking at Tables IV and V, one thing to observe is that
SHC struggled in all experiments under 100 areas and finished
last as can be shown in Table VII. The values in bold represent
the best performing algorithm(s).

TABLE IV.
THE RESULTS FROM RUNNING THE EXPERIMENTS UNDER 100 AREAS

Measure SHC SHC-MS GLS-SHC GLS-SHC-MS

Mean 3.36E+08 3.79E+08 3.45E+08 3.79E+08
SD 1.08E+07 1.91E+05 4.61E+06 0.00E+00
Max 3.64E+08 3.79E+08 3.64E+08 3.79E+08
Min 3.14E+08 3.78E+08 3.36E+08 3.79E+08

(a) Experiment one

Measure SHC SHC-MS GLS-SHC GLS-SHC-MS

Mean 3.34E+08 3.45E+08 3.42E+08 3.65E+08
SD 9.94E+06 1.09E+07 4.66E+06 1.85E+06
Max 3.60E+08 3.67E+08 3.53E+08 3.69E+08
Min 3.14E+08 3.08E+08 3.32E+08 3.61E+08

(b) Experiment two

Measure SHC SHC-MS GLS-SHC GLS-SHC-MS

Mean 3.33E+08 3.42E+08 3.41E+08 3.64E+08
SD 9.53E+06 1.31E+07 7.33E+06 1.69E+06
Max 3.56E+08 3.62E+08 3.60E+08 3.69E+08
Min 3.15E+08 3.05E+08 3.25E+08 3.62E+08

(c) Experiment three

TABLE V.
THE RESULTS FROM RUNNING THE EXPERIMENTS UNDER 500 AREAS

Measure SHC SHC-MS GLS-SHC GLS-SHC-MS

Mean 1.71E+09 1.91E+09 1.72E+09 1.91E+09
SD 1.44E+07 6.08E+04 1.19E+07 3.83E+03
Max 1.74E+09 1.91E+09 1.75E+09 1.91E+09
Min 1.67E+09 1.91E+09 1.69E+09 1.91E+09

(a) Experiment one

Measure SHC SHC-MS GLS-SHC GLS-SHC-MS

Mean 1.69E+09 1.66E+09 1.70E+09 1.81E+09
SD 1.63E+07 5.60E+07 1.70E+07 7.06E+06
Max 1.73E+09 1.76E+09 1.74E+09 1.82E+09
Min 1.66E+09 1.53E+09 1.66E+09 1.79E+09

(b) Experiment two

Measure SHC SHC-MS GLS-SHC GLS-SHC-MS

Mean 1.69E+09 1.64E+09 1.70E+09 1.80E+09
SD 1.62E+07 7.39E+07 3.56E+07 6.60E+06
Max 1.72E+09 1.76E+09 1.82E+09 1.82E+09
Min 1.66E+09 1.46E+09 1.66E+09 1.79E+09

(c) Experiment three

SHC-MS is able to hit high NPV as shown by Tables IV
and V. However, SHC-MS may be too random at times and
thus loses consistency, shown by the larger standard deviation
(SD) in Tables IV and V.

Across the experiments using 100 areas GLS-SHC gives
on average around a 2.56% increase in NPV to SHC as
shown in Table VI, which is impressive given how limited
SHC is. Additional, GLS helps lower the SD, as shown in
Table IV, where the SD of GLS-SHC compared to SHC



is 4.61E+06 and 1.08E+07 respectively for experiment one,
4.66E+06 and 9.94E+06 respectively for experiment two and
7.33E+06 and 9.53E+06 respectively for experiment three. It
is more inconsistent under 500 areas as the SD compared to
SHC is greater in experiment two (1.70E+07 and 1.63E+07
respectively) and experiment three (3.56E+07 and 1.62E+07
respectively), as shown in Table V.

TABLE VI.
THE PERCENTAGE GAIN IN MEAN NPV FROM APPLYING GLS TO OUR

LOCAL SEARCH ACROSS ALL EXPERIMENTS

Algorithm Area Exp. one Exp. two Exp. three

GLS-SHC vs SHC 100 2.54% 2.54% 2.61%
GLS-SHC-MS vs SHC-MS 100 0.04% 6.07% 6.60%
GLS-SHC vs SHC 500 0.87% 0.51% 0.70%
GLS-SHC-MS vs SHC-MS 500 0.01% 8.49% 10.14%

By applying GLS on top of SHC-MS, the performance
gain is highly significant, where it manages to outperform
every algorithm on every experiment. As shown in Tables VII
and VIII, where GLS-SHC-MS ranks first in every experiment.
What is most impressive is the consistency that it shows in all
experiments, especially when faced with 500 areas, as shown
in Table V. The SD of GLS-SHC-MS is the lowest in every
experiment compared to all algorithms not just SHC-MS. The
performance increases dramatically when compared against its
respective local search. On average the performance gain in
mean NPV is approximately 4.24% over all experiments under
100 areas and is approximately 6.21% under 500 areas, as is
shown in table VI.

GLS-SHC-MS returns the highest maximum NPV for every
experiment we run, as shown in Tables IV and V. Under
these experiments, we can see that GLS-SHC-MS is able to
create very large differences when we compare against the
highest NPV from other algorithms. In experiment three using
100 areas, we see that GLS-SHC-MS outperforms its nearest
rival by 1.87%. This relates to a monetary gain of £7m as
shown in Table IV. When we compare that of 500 areas
using experiment three, GLS-SHC-MS outperforms the second
highest maximum NPV of GLS-SHC by £1.5m with the third
highest maximum NPV of SHC-MS being £60m.

When we apply the Friedman test to the experiments, we
observe the following results as shown in Tables VII and
VIII. The values highlighted in bold represent that there is
a significant difference against the best performing algorithm.

Given the results shown in Tables VII and VIII, GLS-SHC-
MS achieves the highest performance in all experiments in
both 100 and 500 areas. The above results are very consistent,
and show that GLS-SHC-MS is significantly better than SHC
and GLS-SHC in all six instances. As the p-values of SHC and
GLS-SHC are less than the Holm’s critical value. Additionally,
in four instances GLS-SHC-MS is significantly better than
SHC-MS, as the p-values of SHC-MS are less than the
Holm’s critical value. Therefore, from the results presented
we can conclude that GLS-SHC-MS was the best performing
algorithm.

GLS-SHC is able to find smaller increases in mean NPV
compared to SHC, because the performance of SHC is fairly
limited. This still shows that GLS is an effective algorithm as
it could make improvements with significant limiting factor.

TABLE VII.
THE RESULTS FROM THE FRIEDMAN TEST AT 5% SIGNIFICANCE LEVEL

FOR 100 AREAS

Algorithm Ranking p-value Holm

GLS-SHC-MS (best) 1.43 - -
SHC-MS 1.57 0.59 0.05
GLS-SHC 3.15 2.71E-11 0.025
SHC 3.85 7.08E-21 0.0167

(a) Experiment one

Algorithm Ranking p-value Holm

GLS-SHC-MS (best) 1.00 - -
SHC-MS 2.52 3.93E-9 0.05
GLS-SHC 2.75 1.22E-11 0.025
SHC 3.73 3.97E-26 0.0167

(b) Experiment two

Algorithm Ranking p-value Holm

GLS-SHC-MS (best) 1.00 - -
SHC-MS 2.68 7.69E-11 0.05
GLS-SHC 2.70 4.58E-11 0.025
SHC 3.62 3.41E-24 0.0167

(c) Experiment three

TABLE VIII.
THE RESULTS FROM THE FRIEDMAN TEST AT 5% SIGNIFICANCE LEVEL

FOR 500 AREAS

Algorithm Ranking p-value Holm

GLS-SHC-MS (best) 1.50 - -
SHC-MS 1.50 1.0 0.05
GLS-SHC 3.10 5.76E-10 0.025
SHC 3.90 1.47E-20 0.0167

(a) Experiment one

Algorithm Ranking p-value Holm

GLS-SHC-MS (best) 1.00 - -
GLS-SHC 2.67 9.94E-11 0.05
SHC 3.03 3.78E-15 0.025
SHC-MS 3.30 5.20E-19 0.0167

(b) Experiment two

Algorithm Ranking p-value Holm

GLS-SHC-MS (best) 1.04 - -
GLS-SHC 2.59 1.94E-9 0.05
SHC 2.87 1.36E-12 0.025
SHC-MS 3.50 1.61E-21 0.0167

(c) Experiment three

On the other hand, the randomness of SHC-MS proves to be
very effective as SHC-MS is able to achieve high maximum
NPV and so GLS is able to learn and adapt more effectively.
Therefore, it appears that GLS is only as effective as the hill
climber it sits on.

Overall, the results from our experiments are of great
significance and are showing a sign that computational intelli-



gence can be used to find an optimal deployment plan, espe-
cially when using GLS. The use of computational intelligence
can help decision making and give companies more confidence
in undergoing potentially risky investment decisions compared
to existing methods.

VI. CONCLUSION

This paper considers a new metaheuristic to determine
the optimal deployment plan of fibre optics. In particular,
this approach addresses the problem that telecommunication
companies use a manual approach for deploying fibre optics
to a city. As companies may not necessarily be using the most
optimal deployment plan from the use of past experience may
include outdated information. In this paper, we introduced the
metaheuristic GLS to extend the work by [10][11].

GLS was our chosen metaheuristic as it had been shown
through the work of [12]-[15] to be very effective at optimisa-
tion problems and outperforms the state of the art algorithms
like Genetic Algorithm. We compared GLS with two different
local search algorithms, as the previous work by [11] showed
that they were effective for the problem at hand.

To compare the effectiveness of GLS, we outlined six
different experiments and presented the findings. The results
from the experiments were of great significance to the lit-
erature. From the experiments we were able to show that
GLS was an effective metaheuristic, as GLS was able to
significantly improve its local search. The use of GLS was
able to provide a substantial monetary gain when compared
against other algorithms e.g. under 500 areas GLS-SHC-MS
found £150m more in mean NPV compared to the others. We
also noticed that GLS-SHC-MS achieved the highest maximum
NPV in every experiment. We found that GLS-SHC-MS was
significantly better than the other algorithms and showed that
the application of GLS was very beneficial to the problem.

Future work could be to test other metaheuristics to the
problem, other types of optimisation techniques or to test
different local search techniques with GLS. Alternatively, GLS
could be further tested on a techno-economic model rather than
the economic model put forward in this paper to be build a
more complete model that is common practice in industry.
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