
Noname manuscript No.
(will be inserted by the editor)

On the investigation of hyper-heuristics on a
financial forecasting problem

Michael Kampouridis · Abdullah
Alsheddy · Edward Tsang

Received: date / Accepted: date

Abstract Financial forecasting is a really important area in computational fi-
nance, with numerous works in the literature. This importance can be reflected
in the literature by the continuous development of new algorithms. Hyper-
heuristics have been successfully used in the past for a number of search and
optimization problems, and have shown very promising results. To the best
of our knowledge, they have not been used for financial forecasting. In this
paper we present pioneer work, where we use different hyper-heuristics frame-
works to investigate whether we can improve the performance of a financial
forecasting tool called EDDIE 8. EDDIE 8 allows the GP (Genetic Program-
ming) to search in the search space of indicators for solutions, instead of using
pre-specified ones; as a result, its search area has dramatically increased and
sometimes solutions can be missed due to ineffective search. We apply 14 dif-
ferent low-level heuristics to EDDIE 8, to 30 different datasets, and examine
their effect to the algorithm’s performance. We then select the most prominent
heuristics and combine them into three different hyper-heuristics frameworks.
Results show that all three frameworks are competitive, and are able to show
significantly improved results, especially in the case of best results. Lastly,
analysis on the weights of the heuristics shows that there can be a constant
swinging among some of the low-level heuristics, which denotes that the hyper-

M. Kampouridis
School of Computer Science and Electronic Engineering, University of Essex, UK
Tel.: +44 (0) 1206 87 2678
E-mail: mkampo@essex.ac.uk

A. Alsheddy
College of Computer and Information Sciences (CCIS), Imam Muhammad Bin Saud Islamic
University, Saudi Arabia

E. Tsang
Centre for Computational Finance and Economic Agents, School of Computer Science and
Electronic Engineering, University of Essex, UK

2 Michael Kampouridis et al.

heuristics frameworks are able to ‘know’ the appropriate time to switch from
one heuristic to the other, based on their effectiveness.

Keywords Hyper-heuristics · Genetic Programming · Financial Forecasting

1 Introduction

Financial forecasting is an important area in computational finance [34]. There
are numerous works that attempt to forecast the future price movements of a
stock; several examples can be found in [10,7]. A number of different methods
have been used for forecasting. Such examples are, for instance, Support Vec-
tor Machines [38,26,9,14,16], Learning Classifier Systems [27,28], Bayesian
Kernel Models[31], Fuzzy Logic [17] and Neural Networks [6,37,29]. Genetic
Programming [20,25] (GP) is an evolutionary technique that has widely been
used for financial forecasting. Some recent examples are [30,6,1,12,36,35],
where GP was used for time series forecasting.

Recently, we presented EDDIE 8 (ED8) [18], which was an extension of
the financial forecasting tool EDDIE (Evolutionary Dynamic Data Investment
Evaluator) [32,33]. EDDIE is a machine learning tool that uses Genetic Pro-
gramming to make its predictions. The novelty of ED8 was in its extended
grammar, which allowed the GP to search in the space of indicators to form
its Genetic Decision Trees. In this way, ED8 was not constrained in using
pre-specified indicators, but it was left up to the GP to choose the optimal
ones. We then proceeded to compare ED8 with its predecessor, namely ED-
DIE 7 (ED7), which used indicators that were pre-specified by the user. Results
showed that thanks to the new grammar, ED8 could find new and improved
solutions. However, those results also suggested that ED8’s performance could
have been compromised by the enlarged search space. With the old grammar
(ED7), which was also discussed in [18], EDDIE used 6 indicators from tech-
nical analysis with two pre-specified period lengths. For instance, if one of the
indicators was Moving Average, then the two period lengths used would be
12 and 50 days. On the contrary, ED8 could use any period within a given
parameterized range, which for our experiments was set to 2-65 days. Thus,
the GP could come up with any indicator within that range, and not just with
12 and 50 days. As we can see, the search space of ED8 was much bigger than
the one of its predecessor. To make this clearer, let us give an example: if a
given GP tree can have a maximum of k indicators, then the permutations of
the available 12 indicators1 under ED7 are 12k; on the other hand, if ED8 is
using the same 6 indicators with periods within the range of 2 to 65 days, then
the permutations of the available 384 indicators2 are 384k. It is thus obvious
that ED8’s search space is significantly larger, which can therefore explain the
difficulties of ED8 of consistently finding good solutions.

1 We are using 6 different indicators, with 2 periods each, thus 6 ∗ 2 = 12.
2 We are using 6 different indicators with 65-1=64 periods each, thus 64 ∗ 6 = 384.

On the investigation of hyper-heuristics on a financial forecasting problem 3

Furthermore, hyper-heuristics is a well-known method that has been used
in a variety of search and optimization problems [24], such as transportation
[15], scheduling [11], and timetabling [8], and has returned very promising re-
sults. To the best of our knowledge, hyper-heuristics have not applied before to
a financial forecasting problem. The only exception to this is another previous
work of ours [19], where we introduced a simple hyper-heuristics framework
which was applied to ED8. Nevertheless, our approach in that work was sim-
ple: we selected two heuristics and two mutators and formed a hyper-heuristics
framework. However, a drawback of that approach was that it did not offer
any justification on the selection of the low-level heuristics that consisted the
framework. In addition, results did not show any improvement in the average
performance of the algorithm, but only an improvement on the minimum value
of a single performance metric.

In this paper, we follow a more thorough investigation of the effect of the
heuristics and hyper-heuristics. We start by applying 14 different heuristics
to ED8, one at a time, to 30 different datasets. After this, we select the best
performing heuristics and form hyper-heuristics frameworks. This paper thus
constitutes the first rigorous work on the application of hyper-heuristics to a
financial forecasting problem. Our aim is to demonstrate that the introduction
of hyper-heuristics to this type of problems is advantageous. This is very im-
portant and significant, because of the significance of the financial forecasting
field itself, which requires the continuous development of new and improved
algorithms. In order to demonstrate the above, we apply hyper-heuristics to
ED8, which has been established to be a useful financial forecasting tool [18,
32,33].

The rest of this paper is organized as follows: Section 2 presents the ED8
algorithm, Sect. 3 presents the hyper-heuristics framework, along with its low-
level heuristics, Sect. 4 presents the experimental setup, Sect. 5 presents and
discusses the results, and finally, Sect. 6 concludes this paper and also discusses
future work.

2 Presentation of EDDIE 8

EDDIE is a forecasting tool, which learns and extracts knowledge from a set of
data. The kind of question ED8 tries to answer is ‘will the price increase within
the n following days by r%’? The user first feeds the system with a set of past
data; EDDIE then uses this data and through a GP process, it produces and
evolves Genetic Decision Trees (GDTs), which make recommendations of buy
(1) or not-to-buy (0).

The set of data used is composed of three parts: daily closing price of
a stock, a number of attributes and signals. Stocks’ daily closing prices can
be obtained online in websites such as http : //finance.yahoo.com and also
from financial statistics databases like Datastream. The attributes are indica-
tors commonly used in technical analysis [13]; which indicators to use depends
on the user and his belief of their relevance to the prediction. The technical

4 Michael Kampouridis et al.

indicators that we use in this work are: Moving Average (MA), Trade Break
Out (TBR), Filter (FLR), Volatility (Vol), Momentum (Mom), and Momen-
tum Moving Average (MomMA).3

The signals are calculated by looking ahead of the closing price for a time
horizon of n days, trying to detect if there is an increase of the price by r%
[32]. For this set of experiments, n was set to 20 and r to 4%. In other words,
the GP is trying to use some of the above indicators to forecast whether the
daily closing price is going to increase by 4% within the following 20 days.

After we feed the data to the system, EDDIE creates and evolves a popula-
tion of GDTs. Figure 1 presents the Backus Normal Form (BNF) [4] (grammar)
of ED8. As we can see, the root of the tree is an If-Then-Else statement. The
first branch is either a boolean (testing whether a technical indicator is greater
than/less than/equal to a value), or a logic operator (and, or, not), which can
hold multiple boolean conditions. The ‘Then’ and ‘Else’ branches can be a
new GDT, or a decision, to buy or not-to-buy (denoted by 1 and 0).

<Tree> ::= If-then-else <Condition> <Tree> <Tree> | Decision
<Condition> ::= <Condition> “And” <Condition> |

<Condition> “Or” <Condition> |
“Not” <Condition> |
VarConstructor <RelationOperation> Threshold

<VarConstructor> ::= MA period | TBR period | FLR period | Vol period |
Mom period | MomMA period

<RelationOperation> ::= “>” | “<” | “=”
Terminals:

MA, TBR, FLR, Vol, Mom, MomMA are function symbols
Period is an integer within a parameterized range, [MinP, MaxP]
Decision is an integer, Positive or Negative implemented
Threshold is a real number

Fig. 1 The Backus Normal Form of ED8

As we can see from the grammar in Fig. 1, there is a function called Var-
Constructor, which takes two children. The first one is the indicator, and the
second one is the Period. Period is an integer within the parameterized range
[MinP, MaxP] that the user specifies. As a result, ED8 can return decision
trees with indicators like 15 days Moving Average, 17 days Volatility, etc. The
period is not an issue and it is up to ED8, and as a consequence up to the
GP and the evolutionary process, to decide which lengths are more valuable
for the prediction. A sample GDT is presented in Fig. 2. As we can observe,
the periods 12 and 50 are now in a leaf node, and thus are subject to genetic
operators, such as crossover and mutation.

3 We use these indicators because they have been proved to be quite useful in developing
GDTs in previous works like [23], [2] and [3]. Of course, there is no reason why not use other
information like fundamentals or limit order book. However, the aim of this work is not to
find the ultimate indicators for financial forecasting.

On the investigation of hyper-heuristics on a financial forecasting problem 5

If

<

VarConstructor

MovingAverage 12

6.4

Buy(1) If

>

VarConstructor

Momentum 50

5.57

Not-Buy(0) Buy(1)

Fig. 2 Sample GDT generated by ED8.

Depending on the classification of the predictions, we can have four cases:
True Positive (TP), False Positive (FP), True Negative (TN), and False Nega-
tive (FN). As a result, we can use the metrics presented in Equations 1, 2 and 3.

Rate of Correctness

RC =
TP + TN

TP + TN + FP + FN
(1)

Rate of Missing Chances

RMC =
FN

FN + TP
(2)

Rate of Failure

RF =
FP

FP + TP
(3)

The above metrics combined give the following fitness function, presented in
Equation 4:

ff = w1 ∗ RC − w2 ∗ RMC − w3 ∗ RF (4)

where w1, w2 and w3 are the weights for RC, RMC and RF respectively. These
weights are given in order to reflect the preferences of investors. For instance,
a conservative investor would want to avoid failure; thus a higher weight for
RF should be used. For our experiments, we choose to include strategies that
mainly focus on correctness and reduced failure. Thus these weights have been
set to 0.6, 0.1 and 0.3 respectively.

6 Michael Kampouridis et al.

The fitness function is a constrained one, which allows EDDIE to achieve
lower RF. The effectiveness of this constrained fitness function has been dis-
cussed in [33,22]. The constraint is denoted by R, which consists of two ele-
ments represented by a percentage, given by

R = [Cmin, Cmax],

where Cmin = Pmin

Ntr
× 100%, Cmax = Pmax

Ntr
× 100%, and 0 ≤ Cmin ≤ Cmax ≤

100%. Ntr is the total number of training data cases, Pmin is the minimum
number of positive position predictions required, and Pmax is the maximum
number of positive position predictions required.

Therefore, a constraint of R = [50, 65] means that the percentage of positive
signals that a GDT predicts4 should fall into this range. When this happens,
then w1 remains as it is (i.e. 0.6 in our experiments). Otherwise, w1 takes the
value of zero.

This concludes this short presentation of ED8. In the next section we briefly
present the heuristics used in our framework, and then present the hyper-
heuristics framework itself.

3 Hyper-heuristics framework

3.1 Heuristics

In EDDIE 8, each GP individual represents a possible GDT whose basic com-
ponent is the variable constructor. As mentioned earlier, a variable construc-
tor comprises an indicator and a period. Therefore, the objective is to design
heuristics that improve a given GDT by exploring the space of both indicators
and periods.

The proposed heuristics can be divided into two groups, namely indica-
tor based-heuristics and period-based heuristics. An indicator-based heuristic
searches the space of indicators by making a small change to the indicators
presented in the considered GDT; whereas a period-based heuristic focuses on
the space of the periods in the GDT.

Each proposed heuristic takes one of the following three approaches:

– A random mutation: this approach makes a random change either to the
indicators or the periods of the current GDT, resulting in new GDT(s). It
compares the new GDT(s) with the original GDT, and returns the best
one.

– An iterative hill climbing: this is a local search procedure that iteratively
searches the local space (i.e. neighborhood) of the current GDT. A neighbor
can be obtained from the current solution by making a small change to its
structure. The procedure starts from an initial solution, and then iteratively

4 As we have mentioned, each GDT makes recommendations of buy (1) or not-to-buy (0).
The former denotes a positive signal and the latter a negative. Thus, within the range of
the training period, which is t days, a GDT will have returned a number of positive signals.

On the investigation of hyper-heuristics on a financial forecasting problem 7

moves to a better neighbor. The search stops when none of the neighbors
yields an improvement to the current tree, returning a local optimum GDT.

– A single-step hill climbing: this approach is similar to the previous hill
climber, however, the search examines only the neighbourhood of the initial
GDT. It stops once a better neighbor is found, or the neighborhood is
examined completely without improvement.

Based on the above approaches, we devise the following period-based heuris-
tics:

1. Period-based Mutation (PMut). This heuristic mutates the current GDT
by trying two new periods for a randomly picked variable constructor. The
two periods are obtained by adding/subtracting a pre-set value (k) from
the current period, resulting in two new GDTs. In this paper we experiment
with 8 values of k: 1 (PMut1), 3 (PMut3), 5 (PMut5), 7 (PMut7), 10
(PMut10), 11 (PMut11), 13 (PMut13), and 15 (PMut15). These values
were arbitrarily selected. It is not the scope of this paper to look for the
optimal heuristic, but only to demonstrate the effectiveness of different
heuristics combined under hyper-heuristics frameworks.

2. Period-based hill climbing (PHC). This is an iterative hill climbing proce-
dure. In PHC, the neighbourhood includes any GDT that can be obtained
by modifying the period of a variable constructor in the current tree. Here,
this modification is defined as a marginal change (k) to the value of period,
such that −10 ≤ k ≤ 10.

3. Period-based single-step hill climbing (sPHC). This is the single-step hill
climbing version of PHC.

The heuristics that focus on indicators are as follows:

1. Shuffle Mutation (ShufMut). This mutator puts the variable constructors
of the considered GDT in a sequence following a depth-first order. Then,
it shuffles the sequence, and then updates the GDT accordingly.

2. Swap Mutation (SwapMut). This mutator is similar to ShufMut, how-
ever, a single swap between two random variable constructors is performed,
instead of shuffling the complete sequence.

3. Indicator-based hill climbing (IHC). This is an iterative hill climbing pro-
cedure in which a solution is represented by a sequence of variable con-
structors, representing their order in the considered GDT. In IHC, the
neighbourhood includes any sequence that can be obtained from the cur-
rent solution by performing a single swap between any two variable con-
structors.

4. Indicator-based single-step hill climbing (sIHC). This is the single-step
hill climbing version of IHC.

3.2 The Framework

In this simple framework, all low level heuristics are used simultaneously. In-
spired by the Population Based Incremental Learning algorithm [5] and the

8 Michael Kampouridis et al.

alike Estimation of Distribution Algorithms [21,39], all low level heuristics are
initially given a weight w of being selected, where w = 1

#heuristics . Thus, if a
framework consists of 4 heuristics, then the initial weight of each heuristic is
1
4 . Then depending on the result on the performance of a tree after the impli-
cation of a heuristic, the following cases can occur: increase in performance, no
change in performance, decrease in performance. Depending on the case, there
is a different reward/punishment for the respective heuristic. This is denoted
by r. Thus, the weight w is updated as follows:

1. Increase in performance
w = w0 + r

2. No change in performance
w = w0 − r/5

3. Decrease in performance
w = w0 − r

The highest reward is offered when the selected heuristic has offered an
increase in the performance of the respective tree. In the case of no change
in performance, we slightly penalize the selected heuristic by decreasing its
weight by r/5. Lastly, there is a punishment of r in the case of decrease in the
performance.

At the moment, r is static throughout the GP run. We have left it as
a future work to investigate different weight update setups, such as linear
or exponential.5 Let us now move to the next section, which presents the
experimental setup.

4 Experimental Setup

The data we feed to ED8 consist of daily closing prices. These closing prices
come from 23 arbitrary stocks from FTSE 100, and from 7 international in-
dices. The 23 FTSE 100 stocks are: Aggreko, Amec, Amlin, AngloAmerican,
Barclays, British Airways (BA), British Petroleum (BP), Cadbury, Carnival,
Centrica, Easyjet, First, Hammerson, Imperial Tobacco, Marks and Spencer,
Next, Royal Bank of Scotland (RBS), Schroders, Sky, Tesco, Unilever, and
Xstrata. The 7 indices are: Athens Stock Exchange (Greece), Dow Jones In-
dustrial Average (USA), Hang Seng Index (Hong Kong), MDAX (Germany),
NASDAQ (USA), NIKEI (Japan), and NYSE (USA). The training period is
1000 days and the testing period 300.

The reason for using that many datasets (30 in total), is because it is
possible that the heuristics that we have selected in this paper do not offer

5 The same also applies to the fact that we have set the reward in the second scenario
above to r/5 and not some other fraction of r. The reader should keep in mind that it
is outside the scope of this work to look for the optimal parameter values. Our focus is on
investigating whereas hyper-heuristics can improve the performance of ED8, under the same
set of parameter values. This principle applies to any other parameters that can be found
in this work.

On the investigation of hyper-heuristics on a financial forecasting problem 9

any improvements to the performance of some of the stocks. Thus, it would
be futile to apply a hyper-heuristics framework to these datasets. Therefore,
while we start our experiments with 30 datasets, it is very likely that hyper-
heuristics will be applied to only a fraction of them.

Table 1 GP Parameters.

GP Parameters

Max Initial Depth 6
Max Depth 8
Generations 50
Population size 500
Tournament size 2
Reproduction probability 0.1
Crossover probability 0.9
Mutation probability 0.01
Period (ED8) [2,65]

The GP parameters are presented in Table 1. For statistical purposes, we
run the GP for 50 times. Thus, the process that is followed is that we create a
population of 500 GDTs, which are evolved for 50 generations, over a training
period of 1000 days. At the last generation, the best performing GDT in terms
of fitness is saved and applied to the testing period. As we have already said,
this procedure is done for 50 individual runs.

In addition, we should emphasize that we require that the datasets have
a satisfactory number of actual positive signals. By this we mean that we are
neither interested in datasets with a very low number of signals, neither with
an extremely high one. Such cases would be categorized as chance discovery,
where people are interested in predicting rare events, such as a stock market
crash. Clearly this is not the case in our current work, where we use EDDIE
for investment opportunities forecasting. We are thus interested in datasets
that have opportunities around 50-70% (i.e. 50-70% of actual positive signals).
Therefore, we need to calibrate the values of r and n (see Sect. 2) accordingly,
so that we can obtain the above percentage from our data. For our experiments,
the value of n is set to 20 days. The value of r varies, depending on the dataset.
This is because one dataset might reach a percentage of 50-70% with r = 4%,
whereas another one might need a higher or lower r value. Accordingly, we need
to calibrate the value of the R constraint, so that EDDIE produces GDTs that
forecast positive signals in a range which includes the percentage of the actual
positive signals of the dataset we are experimenting with. R thus takes values
in the range of [−5%, +5%] of the number of positive signals that the dataset
has. For instance, if under r = 4% and n = 20 days, a dataset has 60% of
actual positive signals, then R would be set to [55,65].

Moreover, Table 2 presents the parameters of the hyper-heuristics frame-
work. The probability of applying hyper-heuristics is set for this work at 35%.
Thus, 35% of the GDTs’ periods can be updated through hyper-heuristics at

10 Michael Kampouridis et al.

each generation. We did not want to set a higher probability, because this could
increase the computational times. As mentioned earlier, the initial weight of
each heuristic is set to 1

#heuristics , where #heuristics denotes the number of
heuristics that exist in a hyper-heuristics framework. Lastly, the reward is set
to be equal to 5% of the initial weight. So in the above example the reward
would be 1

4 × 0.05 = 0.0125. At the moment, the reward is static throughout
the entire GP run. We leave it as a future work to investigate the effects of
different reward update setups.

Lastly, it should be mentioned that before deciding which heuristics are
going to be combined in the hyper-heuristics framework, we are interested in
examining the performance of each one of them individually. This will then
allow us to select the most prominent ones and combine them in the framework.
Therefore, the next section starts by reporting on the performance of the
individual heuristics (Section 5.1). Then, in Section 5.2 we present the results
from the hyper-heuristics framework.

Table 2 hyper-heuristics Parameters.

hyper-heuristics Parameters

hyper-heuristics probability 0.35
Initial Weight 1

#heuristics

Reward/Punishment 1
#heuristics

× 0.05

5 Results

5.1 Individual heuristics results

In this section, we are interested in identifying the heuristics that have of-
fered the most improvements to the fitness and performance metrics of the 30
datasets. In addition, we are interested in also identifying the most “promis-
ing” datasets, i.e., the datasets that benefited the most by the heuristics that
were applied to them.

Table 3 presents the total number of improvements that were introduced
to each dataset’s Fitness, RC, RMC and RF. In order to calculate an improve-
ment, we run a two tailed t-test at 10% significant level6, and compare the
distribution of the original ED8 version with the distribution of each one of the
14 heuristics. The null hypothesis (H0) is that the two distributions that are
compared have equal means and equal but unknown variances, whereas the

6 At this point, we did not want to impose a stricter significance level (5%), because this
could result in excluding many datasets and heuristics.

On the investigation of hyper-heuristics on a financial forecasting problem 11

alternative hypothesis (H1) is that the means are not equal.7 In this way, we
can have a clear idea of how many times the introduction of the heuristics has
improved ED8, and in which datasets. The calculation of the improvements
results to a ‘league’ table. This means that whenever there is an improve-
ment in any performance metric (Fitness, RC, RMC, RF), in any of the 14
heuristics, the respective dataset receives 1 point. Let us give an example. If
PMut1 has significantly improved all 4 performance metrics of a dataset X,
then this would count as 4 points. We would then continue with the remaining
13 heuristics and calculate how many points were collected under the same
dataset. In the end, we would sum up all points for the X dataset and present
them in Table 3. Results are sorted and presented in descending order. The
first column presents the 10 best performing datasets,8 the second column the
next 10 best, and the third column the last 10 datasets. The first dataset in the
list is Carnival, which as we can observe leads the table with a total number
of 32 improvements.

Table 3 Datasets league table. Results have been sorted by the datasets’ points in descend-
ing order.

Dataset Points Dataset Points Dataset Points

Carnival 32 Hammerson 6 Amec 2
Xstrata 27 Schroders 4 NIKEI 2
Athens 22 DJIA 4 Tesco 1
Centrica 12 BP 3 NASDAQ 1
Next 12 Marks&Spencer 3 First 1
MDAX 11 HSI 3 BA 1
Amlin 10 Barclays 3 AngloAmerican 0
BAT 10 Imp.Tobacco 3 RBS 0
Aggreko 8 NYSE 3 Sky 0
Easyjet 8 Unilever 2 Cadbury 0

As we can observe from Table 3, there are quite a few stocks at the end
of the table that have very few or no improvements at all. It would thus be
futile to apply hyper-heuristics to these datasets; since the low-level heuristics
did not manage to improve the datasets’ performance metrics (or offered very
few improvements), we believe that hyper-heuristics would also not offer any
improvements, since after all they use the exact same heuristics. We thus
choose to apply hyper-heuristics only to the first 10 datasets in the list. These
datasets are: Carnival, Xstrata, Athens, Centrica, Next, MDAX, Amlin, BAT,
Aggreko, and Easyjet. To decide which heuristics should be included in the
hyper-heuristics framework, we consult Table 4.

7 The null hypothesis remains the same throughout all t-tests of this paper. Thus, when-
ever we mention that we run a t-test between ED8 and a heuristic/hyper-heuristic, we run
it under the null hypothesis that the means of these two algorithms are the same.

8 A ‘well-performing’ dataset is considered to be the one that has received many points
in the league table-thus has received many improvements in its performance metrics.

12 Michael Kampouridis et al.

Table 4 Heuristics league table. Results have been sorted by the heuristics’ points in de-
scending order. This league table takes into account heuristics’ results under all 30 datasets
tested.

Heuristic Points

PMut11 18
PMut15 18
PMut1 17
sPHC 17
PMut13 16
PMut3 15
PHC 14
sIHC 14
IHC 14
ShufMut 14
SwapMut 14
PMut7 11
PMut10 9
PMut5 7

Table 4 presents the number of improvements each heuristic has introduced
to all 30 datasets. The process is similar to Table 3: we ‘iterate’ through
each heuristic and count the number of significant improvements that it has
introduced to each dataset. Each improvement counts for 1 point. In the end,
we sum up the number of points each heuristic has collected and presented in
Table 4. Results are again sorted in descending order. PMut11 and PMut15
are the two leading heuristics with 18 improvements. However, as we can
observe, the majority of the heuristics have performed similarly well. For this
reason, we choose to use a hyper-heuristics framework that will include all 14
heuristics. We call this framework HH-1. HH-1’s advantage is that it is a very
general framework, because it uses all 14 heuristics.

Nevertheless, while the above is an advantage, it also poses at the same time
a disadvantage: HH-1 does not ‘give credit’ to those heuristics that have done
significantly well under the 10 datasets that we use for our hyper-heuristics
experiments (best 10 datasets from Table 3).9 Therefore, we believe that it
would be beneficial to create hyper-heuristics frameworks that acknowledge
the fact that certain heuristics can be highly beneficial to specific datasets.
This kind of frameworks are more ‘focused’, and have thus the potential to
result to even higher performance. For this reason, we re-construct the league
table, with the difference that now we only take into account the improvements
that have taken place for the 10-best performing datasets. In addition, since we
are now examining the heuristics’ performance to the best performing datasets
only, we stricken the significance level of the t-test from 10% to 5%. As we

9 As we have already mentioned, we are not going to be using the 20 datasets from the last
two columns of Table 3 for our hyper-heuristics experiments. However, when constructing
HH-1, we took into account even the improvements that took place to these 20 datasets.
As explained, the advantage of that approach is that it creates a very general framework,
without the need of having to disregard certain heuristics.

On the investigation of hyper-heuristics on a financial forecasting problem 13

can observe from Table 5, results are slightly different. To begin with, not all
heuristics have offered many improvements. For instance, PMut7 and PMut5
have only offered 2 and 1 improvements, significantly. This table leads us
to construct two additional hyper-heuristics frameworks. One with the top-5
heuristics (PHC, PMut15, PMut11, PMut13, and sPHC), and one with the
top-10 heuristics (PHC, PMut15, PMut11, PMut13, sPHC, PMut1, IHC,
ShufMut, PMut3, and sIHC). We call these two new frameworks HH-2 and
HH-3, respectively.

Table 5 Heuristics league table for the 10-best datasets. Results have been sorted by the
heuristics’ points in descending order. This league table takes into account heuristics’ results
under the 10-best performing datasets.

Heuristic Points

PHC 12
PMut15 10
PMut11 8
PMut13 8
sPHC 8
PMut1 7
IHC 7
ShufMut 7
PMut3 5
sIHC 5
PMut10 4
SwapMut 3
PMut7 2
PMut5 1

5.2 Hyper-heuristics results

5.2.1 Hyper-heuristics framework 1

Tables 6 and 7 present the average and best10 results, over 50 runs, from
the comparison of the original version of ED8 with the first hyper-heuristics
framework, denoted by HH-1. As already mentioned, this framework consists
of all 14 heuristics. In order to see if HH-1 has offered a significant improvement
to the mean values of the performance metrics, we again use a two-tailed t-test,
between the original version of EDDIE 8, and HH-1. When HH-1 significantly

10 Since fitness and RC are maximization problems, the ‘best’ result between two values is
the maximum value. On the other hand, RMC and RF are minimization problems, so the
‘best’ result between two values is the minimum value.

14 Michael Kampouridis et al.

improves a metric at 5% significance level,11 we set the respective value of
HH-1 in bold font. When, on the other hand, there is a significant diminution
in a metric’s value, we denote it by underlying the HH-1’s value.12

Dataset Heuristic Fitness RC RMC RF
Aggreko Original 0.2424 0.5919 0.3132 0.2716

HH-1 0.2351 0.5813 0.3586 0.2595
Amlin Original 0.1469 0.5207 0.4155 0.4132

HH-1 0.1591 0.53 0.3792 0.4031
Athens Original 0.1469 0.5475 0.2481 0.5227

HH-1 0.1224 0.5084 0.4289 0.4658
BAT Original 0.2122 0.5458 0.4318 0.2403

HH-1 0.2304 0.5531 0.4292 0.2276
Carnival Original 0.1784 0.553 0.3658 0.3895

HH-1 0.1975 0.5701 0.3422 0.3783
Centrica Original 0.1694 0.46 0.5824 0.1612

HH-1 0.185 0.4826 0.5442 0.1672
Easyjet Original 0.0685 0.4051 0.747 0.3328

HH-1 0.1054 0.4329 0.7136 0.2965
MDAX Original 0.0767 0.4852 0.3235 0.607

HH-1 0.0802 0.4883 0.3172 0.6026
Next Original 0.1316 0.4825 0.5348 0.348

HH-1 0.1213 0.4705 0.546 0.3629
Xstrata Original 0.2061 0.5362 0.3942 0.2541

HH-1 0.2117 0.5411 0.3693 0.2699

Table 6 Average Results for HH-1.

As we can observe, HH-1 is quite competitive. In terms of average values,
HH-1 has improved 4 different datasets (Amlin, BAT, Carnival, Easyjet). How-
ever, what is more impressive is the improvements in the best values (Table 7).
We can see that HH-1 has improved the best value of ED8 in all 10 datasets by
at least 1%.13 Moreover, in the majority of the datasets, these improvements
happen in more than one metric. In total, HH-1 has offered 24 improvements
to the metrics of the datasets, while it has caused only 7 diminutions. Lastly, it
is worth mentioning that in some cases HH-1 has offered remarkable improve-
ments in the best values: Athens’ RF: improvement by about 27%, Centrica’s
Fitness, RC and RMC: improvements by about 15, 23, and 43%, respectively.
Overall, we can argue that HH-1 is better than the original ED8 version.

11 Because of the fact that we are running multiple comparisons between EDDIE 8 and
a hyper-heuristics framework (i.e., we compare the two versions in terms of four different
metrics: Fitness, RC, RMC, RF), we apply Bonferroni adjustment to ensure that the sta-
tistical error is indeed 5%. Since we compare EDDIE 8 under 10 datasets and in terms of 4
metrics, we have a total of 10× 4 tests. Thus, the ‘real’ statistical error, which is equivalent
to 5%, is 1−0.05

4×10
= 0.02375 or 2.375%.

12 The above practice of using bold fonts and underlining the significantly worsened values
also applies to the remaining sections of the paper.
13 We cannot of course run a t-test for the comparison of the best values, since we are

not dealing with distributions, but only with a single value (best). We consider a significant
improvement/diminution when the difference of HH-1 with the original ED8 version is above
1%.

On the investigation of hyper-heuristics on a financial forecasting problem 15

Dataset Heuristic Fitness RC RMC RF
Aggreko Original 0.3256 0.6933 0.0607 0.1373

HH-1 0.342 0.7133 0.0 0.1856
Amlin Original 0.2838 0.6633 0.0568 0.269

HH-1 0.2676 0.6467 0.0 0.3226
Athens Original 0.2198 0.6333 0.0794 0.4545

HH-1 0.2491 0.6233 0.0 0.1831
BAT Original 0.3303 0.6667 0.278 0.1083

HH-1 0.369 0.7433 0.0 0.1053
Carnival Original 0.2851 0.6667 0.1561 0.2536

HH-1 0.2507 0.63 0.0 0.2632
Centrica Original 0.2802 0.5833 0.4327 0.0571

HH-1 0.435 0.8167 0.0 0.0735
Easyjet Original 0.2788 0.6433 0.1773 0.129

HH-1 0.309 0.6767 0.0 0.129
MDAX Original 0.1849 0.6067 0.0973 0.5143

HH-1 0.189 0.6467 0.0 0.4186
Next Original 0.2687 0.6333 0.2727 0.2672

HH-1 0.294 0.66 0.0 0.2171
Xstrata Original 0.3761 0.7433 0.115 0.0513

HH-1 0.378 0.7533 0.0 0.0125

Table 7 Best Results for HH-1.

5.2.2 Hyper-heuristics framework 2

This section presents the results from the second hyper-heuristics framework,
called HH-2. As we have already explained, this framework consists of the
best-5 performing heuristics for the 10 datasets we have selected to experiment
with. These heuristics are: PHC, PMut15, PMut11, PMut13, and sPHC.
Tables 8 and 9 present the average and best results. Improved values are again
in bold fonts, and worsened values are underlined.

We can observe from Table 8 that HH-2 has improved the average values
in 5 datasets: Aggreko, Athens, BAT, Carnival, and Xstrata. Only one dataset
(Athens Stock Exchange) experiences worsened results in some of its metrics
(Fitness, RC, RMC).

Regarding the best values (Table 9), HH-2, like HH-1, shows improvements
to all 10 datasets. The total number of improvements is 29, whereas the diminu-
tions are only 8. We should again mention some remarkable improvements by
HH-2 in the best values: Amlin’s RF by 27%, BAT’s RMC by 21%, Centrica’s
Fitness, RC, and RMC by 15, 23, and 43%, respectively, and Next’s RMC by
27%. Overall, we can argue that HH-2 is also better than the original ED8
version.

5.2.3 Hyper-heuristics framework 3

This section presents the results from the third hyper-heuristics framework,
called HH-3. This framework consists of the best-10 performing heuristics
for the 10 datasets we have selected to experiment with. These heuristics
are: PHC, PMut15, PMut11, PMut13, sPHC, PMut1, IHC, ShufMut,

16 Michael Kampouridis et al.

Dataset Heuristic Fitness RC RMC RF
Aggreko Original 0.2424 0.5919 0.3132 0.2716

HH-2 0.252 0.5941 0.3392 0.2523
Amlin Original 0.1469 0.5207 0.4155 0.4132

HH-2 0.1756 0.5423 0.3663 0.3869
Athens Original 0.1469 0.5475 0.2481 0.5227

HH-2 0.1176 0.5049 0.4253 0.4760
BAT Original 0.2122 0.5458 0.4318 0.2403

HH-2 0.2192 0.5431 0.4606 0.2173
Carnival Original 0.1784 0.553 0.3658 0.3895

HH-2 0.2085 0.5788 0.278 0.3811
Centrica Original 0.1694 0.46 0.5824 0.1612

HH-2 0.1888 0.4869 0.5353 0.1661
Easyjet Original 0.0685 0.4051 0.747 0.3328

HH-2 0.0862 0.4137 0.7609 0.2972
MDAX Original 0.0767 0.4852 0.3235 0.607

HH-2 0.0701 0.4759 0.3117 0.613
Next Original 0.1316 0.4825 0.5348 0.348

HH-2 0.1258 0.4772 0.5276 0.3591
Xstrata Original 0.2061 0.5362 0.3942 0.2541

HH-2 0.2474 0.5903 0.2868 0.2602

Table 8 Average Results for HH-2.

Dataset Heuristic Fitness RC RMC RF
Aggreko Original 0.3256 0.6933 0.0607 0.1373

HH-2 0.342 0.7133 0.0 0.0845
Amlin Original 0.2838 0.6633 0.0568 0.269

HH-2 0.2707 0.6467 0.0 0.0
Athens Original 0.2198 0.6333 0.0794 0.4545

HH-2 0.2362 0.61 0.0124 0.3764
BAT Original 0.3303 0.6667 0.278 0.1083

HH-2 0.3598 0.7233 0.0628 0.0658
Carnival Original 0.2851 0.6667 0.1561 0.2536

HH-2 0.2652 0.6467 0.0 0.2598
Centrica Original 0.2802 0.5833 0.4327 0.0571

HH-2 0.4357 0.8167 0.0 0.0688
Easyjet Original 0.2788 0.6433 0.1773 0.129

HH-2 0.3045 0.6733 0.0985 0.0
MDAX Original 0.1849 0.6067 0.0973 0.5143

HH-2 0.1691 0.6233 0.0 0.5301
Next Original 0.2687 0.6333 0.2727 0.2672

HH-2 0.294 0.66 0.0 0.2476
Xstrata Original 0.3761 0.7433 0.115 0.0513

HH-2 0.3835 0.76 0.0 0.056

Table 9 Best Results for HH-2.

PMut3, and sIHC. Tables 10 and 11 present the average and best results.
Improved values are again in bold fonts, and worsened values are underlined.

HH-3 has improved the average values of Amlin’s RMC, Athens’ RF, Carni-
val’s RC and RMC, and Easyjet’s Fitness, RC, and RF. This makes 4 datasets
with improved metrics. On the other hand, we can only see that there are only
2 datasets with worsened average results (Athens and Next). The remaining

On the investigation of hyper-heuristics on a financial forecasting problem 17

datasets do not show any significant improvements/diminutions. Thus, it can
be argued that HH-3 is somehow better than the original ED8 version.

Dataset Heuristic Fitness RC RMC RF
Aggreko Original 0.2424 0.5919 0.3132 0.2716

HH-3 0.2264 0.5717 0.3618 0.2682
Amlin Original 0.1469 0.5207 0.4155 0.4132

HH-3 0.1692 0.5404 0.3322 0.4062
Athens Original 0.1469 0.5475 0.2481 0.5227

HH-3 0.1316 0.5134 0.4015 0.4544
BAT Original 0.2122 0.5458 0.4318 0.2403

HH-3 0.223 0.5476 0.4444 0.2193
Carnival Original 0.1784 0.553 0.3658 0.3895

HH-3 0.1893 0.5645 0.3177 0.392
Centrica Original 0.1694 0.46 0.5824 0.1612

HH-3 0.1646 0.4522 0.5821 0.1755
Easyjet Original 0.0685 0.4051 0.747 0.3328

HH-3 0.1235 0.4441 0.6985 0.2735
MDAX Original 0.0767 0.4852 0.3235 0.607

HH-3 0.0687 0.4808 0.3437 0.6154
Next Original 0.1316 0.4825 0.5348 0.348

HH-3 0.1252 0.4797 0.5192 0.369
Xstrata Original 0.2061 0.5362 0.3942 0.2541

HH-3 0.235 0.566 0.3375 0.2538

Table 10 Average Results for HH-3.

Let us now move to the best results presented in Table 11. As with the
previous two frameworks, HH-3 has significantly improved the best values of
the performance metrics in all 10 datasets. The total number of improvements
is 32, and the total diminutions are only 2. This is very impressive, because
it shows that in the majority of the times somebody would use HH-3, would
benefit significantly. There are again, like in the previous frameworks, some
datasets that have shown significant improvements: Athens’ RF by 45%, BAT’s
RMC by 24%, Carnival’s RMC by 15%, Centrica’s Fitness, RC, and RMC by
15, 23, and 43%, respectively, Next’s RMC by 27%, and Xstrata’s RMC by
11%.

5.2.4 Discussion

As we have seen in the previous three subsections, all hyper-heuristics frame-
works have improved the performance of ED8 in terms of the mean values.
Table 12 presents a summary of the improvements that the frameworks have
introduced, at 5% significance level. As we can observe, both HH-1 and HH-3
have improved ED8 in 3 out of the 10 datasets. In addition, HH-2 has improved
ED8 in 5 datasets. Lastly, the total number of improvements (values with bold
fonts in Tables 6, 8, 10) is consistently higher than the number of diminutions
(underlined values in Tables 6, 8, 10), for all 3 datasets (HH-1: 5-4, HH-2: 9-2,
HH-3: 5-3). The above thus allow us to argue that all three hyper-heuristics

18 Michael Kampouridis et al.

Dataset Heuristic Fitness RC RMC RF
Aggreko Original 0.3256 0.6933 0.0607 0.1373

HH-3 0.3447 0.7167 0.0 0.1364
Amlin Original 0.2838 0.6633 0.0568 0.269

HH-3 0.2794 0.66 0.0 0.3019
Athens Original 0.2198 0.6333 0.0794 0.4545

HH-3 0.2452 0.6333 0.0 0.0
BAT Original 0.3303 0.6667 0.278 0.1083

HH-3 0.3639 0.7367 0.0359 0.0
Carnival Original 0.2851 0.6667 0.1561 0.2536

HH-3 0.3126 0.6933 0.0 0.2387
Centrica Original 0.2802 0.5833 0.4327 0.0571

HH-3 0.435 0.8167 0.0 0.0723
Easyjet Original 0.2788 0.6433 0.1773 0.129

HH-3 0.309 0.6767 0.0 0.0769
MDAX Original 0.1849 0.6067 0.0973 0.5143

HH-3 0.1888 0.6233 0.0 0.5196
Next Original 0.2687 0.6333 0.2727 0.2672

HH-3 0.294 0.66 0.0 0.2165
Xstrata Original 0.3761 0.7433 0.115 0.0513

HH-3 0.3918 0.77 0.0 0.0

Table 11 Best Results for HH-3.

frameworks are competitive to ED8. In addition, HH-2 is doing better than
the other two frameworks.

Framework No of Improved Stocks (Mean Results) Improvements Diminutions
HH-1 3/10 5 4
HH-2 5/10 9 2
HH-3 3/10 5 3

Table 12 Summary Average Results.

Furthermore, we saw in the previous subsections that all three frameworks
offered remarkable improvements to the best values of ED8, with some of
them being even above 10 or 20%. Table 13 informs us that HH-1 offered 24
improvements (bold values in Table 7) and 7 diminutions (underlined values
in Table 7), HH-2 offered 29 improvements (bold values in Table 9) and 8
diminutions (underlined values in Table 9), and HH-3 offered 32 improvements
(bold values in Table 11) and only 2 diminutions (underlined values in Table
11). To better interpret these results, we should take into account that we were
examining 4 performance measures (Fitness, RC, RMC, RF) for 10 datasets;
thus, there were in total 40 cases that we were examining. Hence, HH-1 had
improvements in 60% of these cases (24 out of 40), HH-2 72.5%, and HH-3
improved the 80% of these cases. These figures are very high and impressive,
especially if we also consider the very low percentage of the diminutions (HH-1:
17.5%, HH-2: 20%, HH-3: 5%).

We should mention that we are especially interested in the best values,
because if an investor was using ED8 to assist him with his investments, he

On the investigation of hyper-heuristics on a financial forecasting problem 19

Framework Improvements Diminutions
HH-1 24 7
HH-2 29 8
HH-3 32 2

Table 13 Summary Best Results.

would run the algorithm many times and then select the best tree that was pro-
duced. Thus, having such improved results in terms of best has very practical
advantages in the financial world.

The above thus allow us to claim that the introduction of hyper-heuristics
frameworks to EDDIE has been very advantageous. All three frameworks have
shown positive results. For instance, HH-1 is a more general framework that
uses all 14 heuristics, while HH-2 and HH-3 are more ‘focused’. Also, all 3 of
them have offered similar number of improvements to both the mean and best
values of the performance metrics, with HH-2 doing better in terms of mean
results, and HH-3 doing better when it comes to the best values’ results. We
believe that these improvements in the average values of the performance met-
rics, and especially in the best values, perfectly demonstrate the effectiveness
of the application of hyper-heuristics to EDDIE 8.

Furthermore, Table 14 presents the computational times of a single run for
the Aggreko dataset, under ED8 and the three hyper-heuristics frameworks.14

As we can observe, the original version of ED8 is faster than the other three al-
gorithms. However, this is justifiable because of the number of extra heuristics
all these three frameworks use. In addition, we believe that the computational
cost observed in HH-1, HH-2 and HH-3 is worthy, because of the significantly
improved results in the mean and best values of the performance metrics, as
presented earlier.

Algorithm Computational Time
Original ED8 2 mins & 47 secs
HH-1 4 mins & 35 secs
HH-2 6 mins & 55 secs
HH-3 4 mins & 15 secs

Table 14 Computational times of a single run for the Aggreko dataset.

Lastly, in order to understand the contribution of each heuristic to the
effectiveness of the framework, the evolution over time of the weights of the
different heuristics of a single run produced by HH-2 for the Athens Stock
Exchange and the BAT datasets is plotted in Figures 3 and 4.

Figure 3 clearly shows that the effectiveness of each heuristic, in compar-
ison with others, varies as the search progress. While all 5 heuristics started

14 The computational times of the other 9 datasets we experimented with are similar to
Aggreko’s. For this reason, we chose to provide the times of one dataset only (Aggreko), as
reference.

20 Michael Kampouridis et al.

Fig. 3 Heuristics weights over time for HH-2. Single run of Athens Stock Exchange.

with the same weight, soon after that 3 of them start losing weight (PMut11,
PMut13, PMut15), while the remaining 2 heuristics (sPHC and PHC)
see their weights increasing by time. Nevertheless, PMut11, PMut13, and
PMut15 still continue to contribute to the search, even if this contribution
reduces over time. It thus seems that even with the lower weights of these 3
heuristics, they are still able to offer improvements that boost the average per-
formance of HH-2. Another important observation is that sPHC and PHC
seem to complement each other; when there is an increase in one, there is
a decrease in the other. However, towards the end PHC seems to be taking
over all other heuristics. Its weight keeps increasing and reaches around 100%,
while the other 4 heuristics’ weights end up around 0%.

We can make similar conclusions for Figure 4. However, the difference here
is that there is no heuristic that is a ‘clear winner’ (like PHC for Athens
Stock Exchange). No heuristic’s weight reaches neither 0, nor 100%. It seems
that the search space of BAT is very different from Athens Stock Exchange.
For BAT, sPHC and PHC complement each other throughout the whole
process; while sPHC seems to be winning at first, PHC reaches and goes
above sPHC, around the middle of the process. Towards the end, sPHC is
momentarily able to outperform PHC once again. This is a very interesting
observation, because it implies that the hyper-heuristics framework is able to
“know” the appropriate time to switch from one heuristic to another. This
swinging, which happens a few times, demonstrates the strength of combin-
ing individual heuristics into a hyper-heuristics framework. Furthermore, as
we mentioned we can observe that the heuristics’ weights evolve differently

On the investigation of hyper-heuristics on a financial forecasting problem 21

Fig. 4 Heuristics weights over time for HH-2. Single run of BAT.

between the two datasets, BAT and Athens Stock Exchange. This is another
advantage of the hyper-heuristics approach, because it allows different datasets
to benefit from different heuristics.

To summarize, both of these figures demonstrate the clear advantages of
using a hyper-heuristics framework. In particular, they indicate the effective-
ness of the weight updating scheme, with which the proposed framework has
the ability of deciding which heuristic is more efficient at a given time and
apply it to the trees of the GP population. Secondly, they also demonstrate
the effectiveness of hyper-heuristics, with which different datasets can take
advantage of different heuristics.

6 Conclusion

To conclude, this paper presented work on the application of hyper-heuristics
to a financial forecasting problem. Hyper-heuristics is a well-known heuris-
tic method which has been applied to many different problems. This paper
presents the first, to the best of our knowledge, work on applying hyper-
heuristics to financial forecasting (with the only exception being our previous
work [19]). In that work, we introduced a simple hyper-heuristics framework
and examined its utility after we applied it to EDDIE 8, a financial forecasting
tool. The novelty of EDDIE 8 is that it allows the GP to search in the search
space of indicators for solutions, instead of using pre-specified ones; however,
a consequence of this is that its search area is quite large and sometimes so-

22 Michael Kampouridis et al.

lutions can be missed due to ineffective search. The use of hyper-heuristics in
our previous work [19] showed promising results, because we saw a significant
improvement in the best results of a single performance metric. Neverthe-
less, the hyper-heuristics framework used was quite simple, and also provided
no justification for the selection of the low-level heuristics that consisted the
framework.

In this paper, we followed a more thorough approach. First, 14 different
heuristics were devised and individually examined. This allowed us to iden-
tify those heuristics that were the most promising in terms of performance
(fitness). Then, the most successful heuristics were combined into three differ-
ent hyper-heuristics frameworks. Furthermore, we applied these 14 heuristics
to 30 different datasets. The high number of datasets allowed us to examine
and afterwards focus only on the datasets that received the biggest number of
improvements in their performance metrics (Fitness, RC, RMC, RF). Thus,
after applying the heuristics to all 30 datasets, we selected 10 and tested the
three hyper-heuristics frameworks on them.

Results showed that all frameworks were quite competitive. The first frame-
work, HH-1, showed that it could improve the average performance of the
metrics in 4 out of 10 datasets. The second and third framework offered im-
provements in the performance metrics of all 5 and 4 datasets, respectively.
More importantly, all three frameworks improved the best results of the per-
formance metrics for all 10 datasets. This is an extremely important result,
because it indicates that an investor using the best tree of either of HH-1, HH-
2 or HH-3, would be always guaranteed significantly improved results, which
could lead to a significant increase in his profit.

Both of the above results demonstrate the effectiveness of hyper-heuristics
to our financial forecasting problem. The original version of EDDIE 8 can
perform well, but it can sometimes miss some ‘good’ solutions due to ineffective
search [18]. Therefore, the introduction of the hyper-heuristics has allowed
EDDIE 8 to come with improved average and best solutions.

In addition, further investigation on the weight updating scheme used
by the framework revealed its effectiveness on controlling the weight of each
heuristic. As we saw, this scheme enables the algorithm to know when it is
more efficient to focus on the period of an indicator, and when to focus on
the indicator itself, and switch accordingly. Lastly, the scheme also enables the
algorithm to know which heuristics are more effective under certain datasets.

Future work will focus on testing hyper-heuristics under more datasets
and under more heuristics. We believe that this will allow us to generalize
our results and end up with a framework that can be applied to any dataset
given. Moreover, we plan to do more work on the weights of the heuristics.
Currently, weights are updated by the same, predefined percentage, every time
a heuristic is selected. We plan to experiment with different setups of weight
updating, such as linear and exponential. This would allow smaller changes at
the beginning of the GP run, and bigger changes towards the end. We believe
that this could have a significant effect on the hyper-heuristics framework, and
lead to even better performance results. A way of doing the above could be to

On the investigation of hyper-heuristics on a financial forecasting problem 23

use a co-evolutionary approach for constructing the weight update scheme. For
instance, another GP could be co-evolved to build a set of weight equations
that are evaluated at various intervals on a sample test of the trees’ population.
This would thus allow for a variety of weight update schemes to be searched.

To sum up, this paper investigated the utility of applying hyper-heuristics
to a well-known financial forecasting tool, EDDIE 8. Experimental results
clearly showed that the EDDIE 8 system can be significantly improved by the
addition of such heuristics. Future work entails the investigation of the optimal
set of hyper-heuristics frameworks for EDDIE 8 and comparing this optimized
system to there state-of-the-art financial forecasting algorithms.

Acknowledgements The version has been revised in light of two anonymous referees’ very
helpful reviews, for which the authors are most grateful.

References

1. Agapitos, A., O’Neill, M., Brabazon, A.: Evolutionary learning of technical trading rules
without data-mining bias. In: R. Schaefer, C. Cotta, J. Ko lodziej, G. Rudolph (eds.)
Parallel Problem Solving from Nature – PPSN XI, Lecture Notes in Computer Science,
vol. 6238, pp. 294–303. Springer (2010)

2. Allen, F., Karjalainen, R.: Using genetic algorithms to find technical trading rules.
Journal of Financial Economics 51, 245–271 (1999)

3. Austin, M., Bates, G., Dempster, M., Leemans, V., Williams, S.: Adaptive systems for
foreign exchange trading. Quantitative Finance 4(4), 37–45 (2004)

4. Backus, J.: The syntax and semantics of the proposed international algebraic language of
Zurich. In: International Conference on Information Processing, pp. 125–132. UNESCO
(1959)

5. Baluja, S.: Population-based incremental learning: a method for integrating genetic
search based function optimisation and competitive learning (1994). Technical Report,
Carnegie Mellon University

6. Bernal-Urbina, M., Flores-Méndez, A.: Time series forecasting through polynomial arti-
ficial neural networks and genetic programming. In: Proceedings of the IEEE Congress
on Evolutionary Computation, pp. 3324–3329. Hong Kong (2008)

7. Binner, J., Kendall, G., Chen, S.H. (eds.): Applications of Artificial Intelligence in Fi-
nance and Economics, Advances in Econometrics, vol. 19. Elsevier (2004)

8. Burke, E., MacCloumn, B., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper
heuristic for timetabling problems. European Journal of Operational Research 176,
177–192 (2006)

9. Cao, L., Tay, F.: Support vector machine with adaptive parameters in financial time
series forecasting. IEEE Transactions on Neural Networks 14, 1506–1518 (2006)

10. Chen, S.H.: Genetic Algorithms and Genetic Programming in Computational Finance.
Springer-Verlag New York, LLC (2002)

11. Cowling, P., Chakhlevitch, K.: Hyperheuristics for managing a large collection of
low level heuristics to schedule personnel. pp. 1214 – 1221 Vol.2 (2003). DOI
10.1109/CEC.2003.1299807

12. Dempsey, I., O’Neill, M., Brabazon, A.: Live trading with grammatical evolution. In:
Proceedings of the Grammatical Evolution Workshop (2004)

13. Edwards, R., Magee, J.: Technical analysis of stock trends. New York Institute of
Finance (1992)

14. Gestel, T., Suykens, J., Baestaens, D.E., Lambrechts, A., Lanckriet, G., Vandaele, B.,
Moor, B., Vandewalle, J.: Financial time series prediction using least squares support
vector machines within the evidence framework. IEEE Transactions on Neural Networks
12, 809–821 (2001)

24 Michael Kampouridis et al.

15. Hart, E., Ross, P., Nelson, J.: Solving a real-world problem using an evolving heuristi-
cally driven schedule builder. Evol. Comput. 6(1), 61–80 (1998)

16. Huang, W., Nakamori, Y., Wang, S.Y.: Forecasting stock market movement direction
with support vector machine. Computers & Operations Research (2004)

17. Kablan, A.: Adaptive neuro fuzzy inference systems for high frequency financial trading
and forecasting. pp. 105 –110 (2009). DOI 10.1109/ADVCOMP.2009.23

18. Kampouridis, M., Tsang, E.: EDDIE for investment opportunities forecasting: Extend-
ing the search space of the GP. In: Proceedings of the IEEE Conference on Evolutionary
Computation, pp. 2019–2026. Barcelona, Spain (2010)

19. Kampouridis, M., Tsang, E.: Using hyperheuristics under a GP framework for financial
forecasting. In: C.A. Coello Coello (ed.) Proc. Fifth International Conference on Learn-
ing and Intelligent Optimization (LION5), Lecture Notes in Computer Science 6683,
pp.16–30. Springer, Heidelberg (2011).

20. Koza, J.: Genetic Programming: On the programming of computers by means of natural
selection. Cambridge, MA: MIT Press (1992)

21. Larranaga, P., Lozano, J.: Estimation of Distribution Algorithms: A New Tool for Evo-
lutionary Computation. Norwell, MA: Kluwer (2001)

22. Li, J.: FGP: A genetic programming-ased financial forecasting tool. Ph.D. thesis, De-
partment of Computer Science, University of Essex (2001)

23. Martinez-Jaramillo, S.: Artificial financial markets: An agent-based approach to repro-
duce stylized facts and to study the red queen effect. Ph.D. thesis, CFFEA, University
of Essex (2007)

24. Özcan, E., Bilgin, B., Korkmaz, E.E.: A comprehensive analysis of hyper-heuristics.
Intelligent Data Analysis 12(1), 3–23 (2008)

25. Poli, R., Langdon, W., McPhee, N.: A Field Guide to Genetic Programming. Lulu.com
(2008)

26. Sapankevych, N., Sankar, R.: Time series prediction using support vector machines:
A survey. Computational Intelligence Magazine, IEEE 4(2), 24 –38 (2009). DOI
10.1109/MCI.2009.932254

27. Schulenburg, S., Ross, P.: Strength and money: An LCS approach to increasing returns,
pp. 291–298. Lecture Notes in Computer Science. Springer Berlin / Heidelberg (2001)

28. Schulenburg, S., Ross, P.: Explorations in LCS models of stock trading, P.L. Lanzi,
W. Stolzmann, and S.W. Wilson, editors, Advances in Learning Classifier Systems:
4th International Workshop, IWLCS 2001, vol. 2321, pp. 150–179. Springer Berlin /
Heidelberg (2002)

29. Shachmurove, Y.: Business applications of emulative neural networks. International
Journal of Business 10 (2005)

30. Sharma, V., Srinivasan, D.: Evolutionary computation and economic time series fore-
casting. In: Proceedings of the IEEE Conference on Evolutionary Computation, pp.
188–195. Singapore (2007)

31. Tino, P., Nikolaev, N., Yao, X.: Volatility forecasting with sparse bayesian kernel models.
In: Proceedings of the 4th International Conference on Computational Intelligence in
Economics and Finance (CIEF’05), pp. 1150–1153. Salt Lake City, Utah, USA (2005)

32. Tsang, E., Li, J., Markose, S., Er, H., Salhi, A., Iori, G.: EDDIE in financial decision
making. Journal of Management and Economics 4(4) (2000)

33. Tsang, E., Markose, S., Er, H.: Chance discovery in stock index option and future
arbitrage. New Mathematics and Natural Computation, World Scientific 1(3), 435–447
(2005)

34. Tsang, E., Martinez-Jaramillo, S.: Computational finance. IEEE Computational Intel-
ligence Society Newsletter pp. 3–8 (2004)

35. Wagner, N., Michalewicz, Z.: Adaptive and self-adaptive techniques for evolutionary
forecasting applications set in dynamic and uncertain environments. Foundations of
Computational Intelligence 4, 3 – 21 (2009)

36. Wagner, N., Michalewicz, Z., Kouja, M., McGregor, R.: Time series forecasting for
dynamic environments: The dyfor genetic program model. IEEE Transactions on Evo-
lutionary Computation 11(4), 433 – 452 (2007)

37. Wong, B., Selvi, Y.: Neural network applications in finace: A review and analysis of
literature (1990-1996). Information & Management 34, 129–139 (1998)

On the investigation of hyper-heuristics on a financial forecasting problem 25

38. Yuan, X., Zou, Y.: Technology program financial forecast model based on caco-svm. In:
Intelligent Systems and Applications, 2009. ISA 2009. International Workshop on, pp.
1 –4 (2009). DOI 10.1109/IWISA.2009.5073158

39. Zhang, Q., Sun, J., Tsang, E.: Evolutionary algorithm with guided mutation for the
maximum clique problem. IEEE Transactions on Evolutionary Computation 9(2), 192–
200 (2005)

